高中数学必修一知识点总结
高中数学必修一知识点总结
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。当 时, 。当 时, ;当 时, 不存在。
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。
⑤一般式: (A,B不全为0)
注意:○1各式的适用范围
○2特殊的方程如:平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);
(4)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(二)过定点的直线系
(?)斜率为k的直线系: ,直线过定点 ;
(?)过两条直线 , 的交点的直线系方程为 ( 为参数),其中直线 不在直线系中。
(5)两直线平行与垂直
当 , 时, ;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点
相交
交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解 与 重合
(7)两点间距离公式:设 是平面直角坐标系中的两个点,则
(8)点到直线距离公式:一点 到直线 的距离
(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程 ,圆心 ,半径为r;
(2)一般方程
当 时,方程表示圆,此时圆心为, 半径为
当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,
若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:
(1)设直线 ,圆 圆心 到l的距离为 则有
(2)设直线 ,圆 ,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为 ,则有 ; ;
注:如圆心的位置在原点,可使用公式 去解直线与圆相切的问题,其中 表示切点坐标,r表示半径。
(3)过圆上一点的切线方程:
①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 (课本命题).
②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广).
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆 ,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;
当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当 时,两圆内切,连心线经过切点,只有一条公切线;
当 时,两圆内含; 当 时,为同心圆。
三、立体几何初步
1、柱、锥、台、球的结构特征
(1) 棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的.一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V = ; S =
5、空间点、直线、平面的位置关系
(1)平面
① 平面的概念: A.描述性说明; B.平面是无限伸展的;
② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。
③ 点与平面的关系:点A在平面 内,记作 ;点 不在平面 内,记作
点与直线的关系:点A的直线l上,记作:A∈l; 点A在直线l外,记作A l;
直线与平面的关系:直线l在平面α内,记作l α;直线l不在平面α内,记作l α。
(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)
应用:检验桌面是否平; 判断直线是否在平面内 。 用符号语言表示公理1:
(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据
(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。 符号语言:
公理3的作用:①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
(5)公理4:平行于同一条直线的两条直线互相平行
(6)空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理
(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。
(3)求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:a α a∩α=A a∥α
(9)平面与平面之间的位置关系:平行——没有公共点;α∥β 相交——有一条公共直线。α∩β=b
6、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行 线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行 线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
8、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为 。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为 。
②平面的垂线与平面所成的角:规定为 。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
解题时,注意挖掘题设中两个信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
9、空间直角坐标系
(1)定义:如图, 是单位正方体.以A为原点,分别以OD,O ,OB的方向为正方向,
建立三条数轴 。这时建立了一个空间直角坐标系Oxyz.
1)O叫做坐标原点 2)x 轴,y轴,z轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。
(2)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。
(3)任意点坐标表示:空间一点M的坐标可以用有序实数组 来表示,有序实数组 叫做点M在此空间直角坐标系中的坐标,记作 (x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)
【总结】2013年已经到来,小编在此特意收集了有关此频道的文章供读者阅读。
更多频道:
《3.1 随机事件的概率(2)》测试题
一、选择题
1.若事件A发生的概率为P,则P的取值范围是( ).
A. B. C. D.
考查目的:考查概率的重要性质,即任何事件的概率取值范围是0≤P(A)≤1.
答案:D.
解析:由于事件的频数总是小于或等于试验的次数,所以频率在0~1之间,从而任何事件的概率在0~1之间,在每次实验中,必然事件一定发生,因此它的频率是1,从而必然事件的概率为1. 在每次实验中,不可能事件一定不发生,因此它的频率是0.
2.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175cm的概率为( ).
A.0.2 B.0.3 C.0.7 D.0.8
考查目的:考查事件的并(或称事件的和)、对立事件的概念及概率加法公式的理解和掌握情况.
答案:B.
解析:因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3.
3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).
A.至少有1个白球,都是红球 B.至少有1个白球,至多有1个红球
C.恰有1个白球,恰有2个白球 D.至多有1个白球,都是红球
考查目的:考查互斥事件、对立事件的概念、意义及其区别和联系.
答案:C.
解析:互斥事件:在同一试验中不可能同时发生的两个事件叫互斥事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生. 用A,B,C,D分别表示2个红球,2个黑球,任取2球,共有6种可能的结果,分别是:AB;AC;AD;BC;BD;CD.选择项 C中恰有1个白球,包括AC;AD;BC;BD,恰有2个白球,包括CD,故恰有1个白球,恰有2个白球互斥而不对立.
二、填空题
4.从一副混合后的扑克牌(52张,去掉大、小王)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)的值是 .(结果用最简分数表示)
考查目的:考查事件的并(或称事件的和)的概率公式.
答案:.
解析:一副扑克中有1张红桃K,13张黑桃,事件A与事件B为互斥事件,
5.第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自A大学2名大学生和B大学4名大学生共计6名志愿者,现从这6名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A大学志愿者的概率是 .
考查目的:考查交事件(积事件)与事件的并(或称事件的和)的概率公式.
答案:.
解析:(或).
6.甲、乙两队进行足球比赛,若两队战平的概率是,乙队胜的概率是,则甲队胜的概率是 .
考查目的:考查互为对立事件的概念及其中一个事件发生的概率公式.
答案:.
解析:“甲获胜”是“两队战平或乙获胜”的对立事件,∴甲队胜的概率是.
三、解答题
7.某医院派出医生下乡医疗,一天内派出医生人数及其概率如下:
医生人数
1
2
3
4
5人及以上
概 率
0.1
0.16
0.3
0.2
0.2
0.04
求:
⑴派出医生至多2人的概率;
⑵派出医生至少2人的概率.
考查目的:事件的并(或称事件的和)的概率公式的应用.
答案:⑴0.56;⑵0.74.
解析:记事件A为“不派出医生”,事件B为“派出1名医生”,事件C为“派出2名医生”,事件D为“派出3名医生”,事件E为“派出4名医生”,事件F为“派出不少于5名医生”,则事件A、B、C、D、E、F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.
⑴“派出医生至多2人”的概率为:P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56;
⑵“派出医生至少2人”的概率为:P(C+D+E+F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
另解:1-P(A+B)=1-0.1-0.16=0.74.
8.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?
考查目的:考查事件的并(或称事件的和)的概率公式与方程组的简单应用.
答案:,,.
解析:设事件A、B、C、D分别表示“任取一球,得到红球、任取一球,得到黑球、任取一球,得到黄球、任取一球,得到绿球”,则由已知得,,
,,解得P(B)=,P(C)=,P(D)=,故得到黑球、黄球、绿球的概率分别是,,.
高考数学备考:第一轮复习总体方案
【摘要】小编为大家整理了第一轮复习总体方案,希望高三的同学们好好复习,备战高考,成功是属于你们的。
一、全力夯实双基,保证驾轻就熟
目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基,才能占领高考阵地。
教材是,把握了教材,也就切中了要害。不仅要深刻理解教材中的知识,更要关注教材中解决问题的思想方法,还要全面把握知识体系,保证:⑴不 掌握不放过。对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容,包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留 空白和隐患。⑵胸无全书不放过,在掌握知识点的基础上,根据知识的内在联系,构建知识网络,把书学得“由厚变薄”。不防从课本的章节目录入手,进行串联, 形成体系。⑶有疑难不放过。为巩固复习效果,发展思维能力,适量的练习是必要的,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,彻底扫 除障碍。回归教材、吃透课本,千万不能眼高手低哟。
二、重视错题病例,实时忘羊补牢
错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有治疗的方向,提供了纠错的机会。
由于题海战术的影响,许多同学,拼命做题,期望以多取胜,但常常事与愿违,不见提高,走访了一些同学,普遍觉得困惑他们的是有些错误很顽固,订正过了,评讲过了,还是重蹈覆辙。原因是没有重视错误,或没有诊断出错因,没有收到纠错的效果。
建议:建立错题集,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常 翻阅,常常提醒,警钟长鸣,以绝后患。注意收集错题也有个度的问题,对于那些一时粗心的偶然失误,或一时情绪波动而产生的失误应另作他论。
三、加强毅力训练,做到持之以恒
毅力比热情更重要。进入高三,同学们都雄心勃勃。但由于各种因素的影响,有的同学能够坚持不懈,平步青云。有的同学松弛下来,形成知识或方法上的梗阻。影响情绪和信心。阻碍前进的步伐。训练毅力刻不容缓!
计划明确,并坚决执行,不寻找借口,做到“今日事今日毕”,决不拖到明天做今天的事,练习也要限时完成,一个小时完成的,决不拖成一个半小时完 成,否则将影响后续的学习和生活。任何一门学科,只要三天不接触,拿到题目时,将会觉得入手不顺,思维不畅,效率不高且易出错,若5天不训练将会不进而 退。所以,建议各个学科每天都要有所巩固,根据具体情况哪怕份量轻些也行。遇到困难应及时解决,不能积累,否则会打击信心,丧失斗志。
【总结】第一轮复习总体方案就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。
浏览了本文的同学也浏览了:
高考数学备考:不等式数列口诀
【摘要】高三的同学们正在第一轮的复习阶段,小编为同学们整理了不等式数列口诀,供大家参考,大家要好好复习哦。
数列
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
不等式
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
【总结】不等式数列口诀就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。
浏览了本文的同学也浏览了:
高中数学学习方法之良好的学习习惯
高中数学学习方法之良好的学习习惯
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
(1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
高中理科数学主要失分细节
对于理科学生而言,数学一般是强项,但越是强项的科目也就越容易大意。那么,根据理科生的实际特点
,高考数学应该怎复习呢?下面来听一听老师的建议吧!
无论一轮复习还是二轮复习都应该将重点放在基础知识、基本技能的训练上,尤其是计算能力的培养。
回想这几年的高考情况,以下是考生容易失分的三个方面。
第二,审题不仔细。不少考生审题时,只看到了部分条件,例如f(x)≤0,有的学生就会当成f(x)<0,这
样一来,全部错误。从往年的情况看,有的考生因为粗心丢掉了10多分。
第一,步骤不完整。从这几年看,高考答案的步骤非常详细,而有些考生虽然会做,最后的结果也对,但
是缺少中间步骤,这样很容易失分。
第三,答题时间安排不合理。数学选择题做题时间一般是2分钟,曾有一位女生,学习成绩非常好,考试
中遇到一道不会做的题,耽误了15分钟,题是做出来了,可当她看到别的同学已经开始做解答题时,慌了,结
果考得一塌糊涂。
复习中,学生要提炼高考热点,查漏补缺,针对易错的地方加强练习,熟练掌握解决中低档题目的方法
。在此,提醒考生,千万别排斥高频率的模拟测试,它能帮助学生掌握答题的节奏、技巧,稳定心理状态,提
高动手能力。
针对这些问题,特别提醒考生,考试中一定要规范答题,遇到不会做的题目时先放一放,此外就是一定要
南昌市高中新课程训练题(不等式2)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则下列不等式成立的是( C )
A.? B. C. D.
2.集合、,若是的充分条件,则B的取值范围可以是 ( )
A. B. C. D.
3.不等式( )
A.(0,2) B.(2,+∞) C. D.
4.设,函数则使的X的取值范围是( )
A. B. C. D.
5.若2-m与|m|-3异号,则m的取值范围是 ( )
A. m>3 B.-3
6.设是函数的反函数,则使成立的x的取值范围为( )
A. B. C. D.
7.不等式的解集不是空集,则实数a的取值范围是( )
A. B. C. D.
8.设f(x)= 则不等式f(x)>2的解集为 ( )
A.(1,2)(3,+∞) B.(,+∞)
C.(1,2) ( ,+∞) D.(1,2)
9.a,b,u都是正实数,且a,b满足,则使得a+b≥u恒成立的u的取值范围是( )
A.(0,16) B.(0,12) C.(0,10) D.(0,8)
10.设表示不大于x的最大整数,如:[]=3,[—1.2]=-2,[0.5]=0,则使( )
A. B. C. D.
11.关于x的不等式x|x-a|≥2a2(a( )
A. B. C. D.R
12.在R上定义运算,若不等式成立,则( )
A. B. C. D.
二、填空题:本大题共4小题,每小题4分,共16分。请把答案填在答题卡上。
13.某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则 _________吨.
14.若不等式 的解集为,则a+b= 。
15.对a,bR,记max|a,b|=函数f(x)=max||x+1|,|x-2||(xR)的最小值是 .
16.关于,则实数k的值等于 。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.已知条件p:|5x-1|>a和条件,请选取适当的实数a的值,分别利用所给的两个条件作为A、B构造命题:“若A则B”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.
18.解关于的不等式
19.已知函数有两个实根为
(1)求函数;
(2)设
20.已知函数的图象与x、y轴分别相交于点A、B、(1)求;
(2)当
21.已知:在上是减函数,解关于的不等式:
22.已知函数为奇函数,,且不等式的解集是。
(1)求的值;
(2)是否存在实数使不等式对一切成立?若存在,求出的取值范围;若不存在,请说明理由。
参考答案
一、选择题
C D C AD,A C C A C ,B C
二、填空题
13.20 14.-2
15. 16.
三、解答题
17.解:已知条件即,或,∴,或,
已知条件即,∴,或;
令,则即,或,此时必有成立,反之不然.
故可以选取的一个实数是,A为,B为,对应的命题是若则,
由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题.
18.解:原不等式可化为:
①当时,原不等式的解集为
②当时,原不等式的解集为
③当时,原不等式的解集为
④当时,原不等式的解集为
⑤当时,原不等式的解集为
⑥当时,原不等式的解集为
19.解:(1)
1
2
3
20.
21. 解:由得
由
不等式的解集为
22.解:(1)是奇函数对定义域内一切都成立b=0,从而。又,再由,得或,所以。
此时,在上是增函数,注意到,则必有,即,所以,综上:;
(2)由(1),,它在上均为增函数,而所以的值域为,符合题设的实数应满足,即,故符合题设的实数不存在。
【高中数学必修一知识点总结】相关文章:
高中数学必修2知识点总结11-22
必修一知识点总结05-14
地理必修一知识点总结06-08
地理必修一知识点总结06-22
必修生物一知识点总结11-25
生物必修一知识点总结04-13
高一政治必修一知识点总结06-05
生物必修一核酸知识点总结04-29
生物浙教版必修一知识点总结05-27
生物知识点必修一03-31