第五单元数学广角知识点归纳总结

时间:2022-06-21 22:21:59 总结范文 我要投稿
  • 相关推荐

关于第五单元数学广角知识点归纳总结

  新教材人教版小学六年级下册第五单元数学广角知识点归纳总结:鸽巢问题

关于第五单元数学广角知识点归纳总结

  1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用。

  ①什么是鸽巣原理?先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表:

  放法盒子1盒子2

  130

  221

  312

  403

  无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。 这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。

  类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

  如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信。

  我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式

  ②利用公式进行解题

  物体个数÷鸽巣个数=商……余数 至少个数=商+1

  2、摸2个同色球计算方法:

  ①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

  物体数=颜色数×(至少数-1)+1

  ②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,

  都能保证一定有两个球是同色的。

  ③公式:

  两种颜色:2+1=3(个)

  三种颜色:3+1=4(个)

  四种颜色:4+1=5(个)

  ……

  3、鸽巢原理也叫抽屉原理。

  抽屉原理:把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。这种现象叫着抽屉原理。