- 相关推荐
高中数学等比数列教案(精选10篇)
作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的高中数学等比数列教案,欢迎阅读与收藏。
高中数学等比数列教案 1
【教学目标】
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】
等比数列定义的归纳及运用。
【教学难点】
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列
【教学手段】
多媒体辅助教学
【教学方法】
启发式和讨论式相结合,类比教学。
【课前准备】
制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】
【导入】
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1. 利用游标卡尺测量一张纸的厚度。得数列a,2a,4a,8a,16a,32a。(a>0)
2. 一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列 15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。
3. 复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512。
学生探究三个数列的共同点,引出等比数列的定义。
【新课讲授】
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等差数列:
一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的'公差,通常用d表示。数学表达式: an+1-an=d
等比数列:
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。数学表达式: an?1
an?q
知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。
在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.
高中数学等比数列教案 2
教学目标
1、通过教学使学生理解等比数列的概念,推导并掌握通项公式。
2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力。
3、培养学生勤于思考,实事求是的精神,及严谨的科学态度。
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导。
教学用具
投影仪,多媒体软件,电脑。
教学方法
讨论、谈话法。
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准。(幻灯片)
①-2,1,4,7,10,13,16,19,
②8,16,32,64,128,256,
③1,1,1,1,1,1,1,
④
-
243,81,27,9,3,1,
,
,
⑤31,29,27,25,23,21,19,
⑥1,-1,1,-1,1,-1,1,-1,
⑦1,-10,100,-1000,10000,-100000,
⑧0,0,0,0,0,0,0,
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)。
二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列等比数列。(这里播放变形虫分裂的多媒体软件的.第一步)
判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由。
(1)1, 4, 16, 32。
(2)0, 2, 4, 6, 8。
(3)1,-10,100,-1000,10000。
(4)81, 27, 9, 3, 1.
(5)a, a, a, a, a。
讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利
用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。例题二
求出下列等比数列中的未知项:
(1)2, a, 8;
(2)-4, b, c,?;
?已知数列2, x, d, y,8.是等比数列
①证明数列2, d, 8.仍是等比数列.
②求未知项d.
通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。
练习
判断下列数列是等差数列还是等比数列?
(1)22,2,1,2-1, 2-2 。
(2)3,34,37, 310 。
引申:已知数列{an}是等差数列,而bn?2n
证明数列{bn}是等比数列。
由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。
【课堂小结】
由学生通过一堂课的学习,做个简单的归纳小结。
1、理解。等比数列的定义,判断或证明数列是否为等比数列要用定义判断
2、等比数列公比q≠0,任意一项都不为零。
3、学习等比数列可以对照等差数列类比做研究。
【作业】
书p48. No.1,2;
高中数学等比数列教案 3
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?我们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?
(1)也就是求和的.得数越来越接近?
(2)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
高中数学等比数列教案 4
教学重点:
理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:
遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:
一.复习准备
1.等差数列的通项公式。
2.等差数列的前n项和公式。
3.等差数列的性质。
二.讲授新课
引入:
1、“一尺之棰,日取其半,万世不竭。”
2、细胞分裂模型
3、计算机病毒的传播
由学生通过类比,归纳,猜想,发现等比数列的特点
进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式
注意:
1、公比q是任意一个常数,不仅可以是正数也可以是负数。
2、当首项等于0时,数列都是0。当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3、当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?
4、以及等比数列和指数函数的.关系
5、是后一项比前一项。
列:1,2,(略)
小结:等比数列的通项公式
三.巩固练习:
1.教材P59练习1,2,3,题
2.作业:P60习题1,4。
第二课时5.2.4等比数列(二)
教学重点:等比数列的性质
教学难点:等比数列的通项公式的应用
一.复习准备:
提问:等差数列的通项公式
等比数列的通项公式
等差数列的性质
二.讲授新课:
1讨论:如果是等差列的三项满足
那么如果是等比数列又会有什么性质呢?
由学生给出如果是等比数列满足
2练习:如果等比数列=4,=16,=?(学生口答)
如果等比数列=4,=16,=?(学生口答)
3等比中项:如果等比数列.那么,
则叫做等比数列的等比中项(教师给出)
4思考:是否成立呢?成立吗?
成立吗?
又学生找到其间的规律,并对比记忆如果等差列,
5思考:如果是两个等比数列,那么是等比数列吗?
如果是为什么?是等比数列吗?引导学生证明。
6思考:在等比数列里,如果成立吗?
如果是为什么?由学生给出证明过程。
三.巩固练习:
列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项
解(略)
列4:略:
练习:1在等比数列,已知那么
2P61A组8
高中数学等比数列教案 5
一、教材分析:
等比数列的前n项和是高中数学必修五第二章第3、3节的内容。它是“等差数列的前n项和”与“等比数列”内容的延续。这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培养学生类比分析、分类讨论、归纳推理、演绎推理等数学思想。在高考中占有重要地位。
二、教学目标
根据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:
1、知识与技能:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
2、过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的能力,培养学生从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
3、情感与态度:通过自主探究,合作交流,激发学生的求知欲,体验探索的艰辛,体味成功的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点
重点:等比数列的前项和公式的推导及其简单应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通;从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。
四、教法学法分析
通过创设问题情境,组织学生讨论,让学生在尝试探索中不断地发现问题,以激发学生的求知欲,并在过程中获得自信心和成功感。强调知识的严谨性的同时重知识的形成过程,
五、教学过程
(一)创设情境,引入新知
从故事入手:传说,波斯国王下令要奖赏国际象棋的发明者,发明者对国王说,在棋盘的.第一格内放上一粒麦子,在第二格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?
关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+……+263?
(二)师生讨论、探究新知
总结归纳:当q=1时,Sn=na1
当q≠1时,
公式说明:
①对等比数列{an}而言,a1,an,Sn,n,q知三可求二
②运用公式时要根据条件选取适当的公式,特别注意的是,在公比不知道的情况下要分类讨论;
③错位相减的思想方法。
(三)例题讲解,形成技能
例1:等比数列{an}中,
①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn
③已知a1=2,S3=26,求q。
通过例题一,渗透知三求二的思想。
练习:求等比数列1,-1/2,1/4,-1/8,…,-1/512的各项的和。
例2、等比数列{an}中,已知a1=3,S3=9,求q,an。
练习:等比数列{an}中,若S3=7/2,S6=63/2,求an、S9。
通过练习得出等比数列前项和的一个性质:成等比数列。
例3:
(1)求数列1+1/2,2+1/4,3+1/8,… n+,…的前n项和。
首先由学生分析思路,观察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。
思考:求和:1+a+a2+a3+…+an
(四)课堂小结
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
『设计意图:以此培养学生的口头表达能力,归纳概括能力。』
六、板书设计
略
七、课后记
本节课的设计体现呢“以学生为主体,教师是课堂活动的组织者、引导者和参与者”的现代教育理念。在教学的每一个环节中军设计了问题,始终以教师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。
高中数学等比数列教案 6
教学要求:
探索并掌握等比数列的前n项和的公式;
结合等比数列的通项公式研究等比数列的各量;
在具体的问题情境中,发现数列的等比关系,能用有关知识解决相应问题。
教学重点:
等比数列的前n项和的公式及应用
教学难点:
等比数列的.前n项和公式的推导过程。
教学过程:
一、复习准备:
提问:等比数列的通项公式;
等比数列的性质;
等差数列的前n项和公式;
二、讲授新课:
1、教学:
思考:一个细胞每分钟就变成两个,那么经过一个小时,它会分裂成多少个细胞呢?
分析:公比,因为,一个小时有60分钟
思考:那么经过一个小时,一共有多少个细胞呢?
又因为
所以,则=1152921504
则一个小时一共有1152921504个细胞
2、练习:
列1(解略)
列2(解略)
在等比数列中:已知求已知求
在等比数列中,xx,则xx
三、小结:等比数列的前n项和公式
四、作业:P66,1题
高中数学等比数列教案 7
一、教学背景分析
1.教学内容分析
本节课是高中数学(北师大版必修5)第一章第3节第二课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也经常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探索精神,是提高数学文化素养和培养学生应用意识的良好载体。
2.学情分析
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是高二理科班的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不完全。
二.教学目标
依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:
1.知识与技能目标: 理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。
2.过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。
3.情感与态度目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。
三.重点,难点
教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简单应用。
教学难点:公式的推导思想方法及公式应用中q与1的关系。
四.教学方法
启发引导,探索发现,类比。
五. 教学过程
(一)借助数学文化背境提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
【设计意图】:设计这个数学文化背境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容也紧扣本节课的主题与重点。
问题1:同学们,你们知道西萨要的是多少粒小麦吗?
引导学生写出麦粒总数“等比数列的前n项和”
(二)师生互动,探究问题
问题2:“等比数列的前n项和”
有些学生会说用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)
问题3:同学们,我们来分析一下这个和式有什么特征?
(学生会发现,后一项都是前一项的2倍)
问题4:如果我们把(1)式每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到(2)式:
“等比数列的前n项和”
比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)
问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:“等比数列的前n项和”
【设计意图】:这五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现上述解法,也让学生感受到这种方法的神奇。
问题6:老师指出这就是错位相减法,并要求学生纵观全过程,反思为什么(1)式两边要同乘以2呢?
【设计意图】:经过繁难的计算之苦后,突然发现上述解法,让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫。
(三)类比联想,构建新知
这时我再顺势引导学生将结论一般化。
问题7:如何求等比数列“等比数列的前n项和”的前“等比数列的前n项和”项和“等比数列的前n项和”:
即:“等比数列的前n项和”
(学生相互合作,讨论交流,老师巡视课堂,并请学生上台板演。)
注:学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究。
将“等比数列的前n项和”两边同时乘以公比“等比数列的前n项和”后会得到“等比数列的前n项和”,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前“等比数列的前n项和”项和的关键所在,让学生先思考,再讨论,最后师在突出强调,加深印象。
两式作差得到“等比数列的前n项和”时,肯定会有学生直接得到“等比数列的前n项和”,不忙揭露错误,后面再反馈这个易错点,从而掌握公式的本质。
【设计意图】:在教师的'指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的成就感。增强学习数学的兴趣和学好数学的信心。
问题8:由 “等比数列的前n项和” 得 “等比数列的前n项和”对不对呢?这里的“等比数列的前n项和”能不能等于1呀?等比数列中的公比能不能为1?那么“等比数列的前n项和”时是什么数列?此时“等比数列的前n项和”?你能归纳出等比数列的前n项和公式吗? (这里引导学生对“等比数列的前n项和” 进行分类讨论,得出公式,同时为后面的例题教学打下基础。)
再次追问:结合等比数列的通项公式“等比数列的前n项和” ,如何把“等比数列的前n项和” 用“等比数列的前n项和” 、“等比数列的前n项和” 、“等比数列的前n项和” 表示出来?(引导学生得出公式的另一形式)
公式:
“等比数列的前n项和”
注:公式的理解
知三求二:n q a1 an Sn ;
n的含义:项数(通项公式是qn-1);
q的含义:公比(注意q=1,分类讨论);
错位相减法:乘公比(作用是构造许多相同项)后错开一项后再减。
【设计意图】:通过反问学生归纳,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管仅仅几句话,然而却有画龙点睛之妙用。
(四)讨论交流,延伸拓展
问题9: 探究等比数列前n项和公式,还有其它方法吗?
“等比数列的前n项和”(学生讨论交流,老师指导。依学生的认知水平可能会有以下几种方法)
(1)错位相减法
“等比数列的前n项和”(2)提出公比q
“等比数列的前n项和”(3)累加法
【设计意图】:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围. 这有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.
(五) 应用公式,深化理解
例1:在等比数列{ an }中,
(1)已知a1=3,q=2,n=6,求Sn;
(2)已知a1=8,q=1/2,an =1/2,求Sn;
(3)已知a1=-1.5,a4=96,求q与S4;
(4)已知a1=2,S3=26,求q与a3。
【设计意图】:初步应用公式,理解等比数列的基本量也可“知三求二”,体会方程思想。
例2:等比数列{ an }中,已知a3=3/2,S3=9/2,求a1与q。
【设计意图】:注意公式中的分类讨论思想。
例3:求数列{n+ }的前n项和。
【设计意图】:将未知问题转化为已知问题,进一步体会等比数列前n项和公式的应用。
练习1:求等比数列“等比数列的前n项和”前8项和;
练习2:a3= ,S9= ,求a1和q;
练习3:求数列{n+an}的前n项和。
(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予适时的表扬。)
【设计意图】:通过练习,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想。
(六)总结归纳,加深理解
问题10:这节课你有什么收获?学到了哪些知识和方法?
【设计意图】:以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法等方面总结。以此培养学生的口头表达能力,归纳概括能力。
(学生小结归纳,不足之处老师补充说明。)
1.公式:等比数列前n项和
当q≠1时,Sn= =
当q=1时, Sn=na1
2.方法:错位相减法(乘以公比)
3.思想:分类讨论(公式选择)
(七)故事结束,首尾呼应
最后我们回到故事中的问题,可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺了。
【设计意图】:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。
(八)课后作业,分层练习
(1)阅读本节内容,预习下一节内容;
(2) 书面作业:习题P30 8 .10;
(3)拓展作业:求和:“等比数列的前n项和”
【设计意图】:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。
高中数学等比数列教案 8
教学目标:
1、通过图形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。
2、培养学生利用图形来分析问题、解决问题的'意识和能力。
3、重视利用图形来分析题意,理清思路,提高解决问题的能力
教学过程
一、创设情景,导入新课
计算出结果。
二、探索交流,解决问题
1、教学例2
计算
从第二个数开始,每个数是前一个数的
我一个一个加下去看看,答案好像有点规律。加下去,等号右边的分数越来越接近于1。
可以画个图来帮助思考。用一个圆或一条线段来表示“1”。
从图上可以看出,这些分数不断加下去,总和就是1。
2、渗透极限思想。
如果不停地加下去,
1、猜一猜“和”是多少?
2、请用“形”来解释这个结果。
3、反馈:
如果不停地加下去,空白部分会怎么样?
那的结果怎么样?(无限接近1。)
运用知识
你能用所学知识解决下列问题吗?
我是这样想的
所以原式的结果是1。
三、布置作业
作业:第110页练习二十二,第3题、第4题、第5题。
高中数学等比数列教案 9
我今天说课的题目是《等比数列》,这一节内容选自人教社出版的高中数学必修5的第二章第4节第1课时,我的说课将从以下五个方面进行:
一、教材分析
《数列》是高中数学知识的重要内容之一,作为一种特殊的函数,它是反映自然规律的基本数学模型,在现实生活及其他学科中有着广泛应用,同时它与函数、方程等知识的内在联系,使得数列的学习在高中知识体系中显得尤为重要。在《等比数列》的学习过程中渗透着多种数学思想方法,如类比归纳、演绎推理等。这些数学思想方法贯彻高中数学课程的始终,因此《等比数列》的学习将成为学生体会数学方法、深化数学思想的重要知识内容。
《等比数列》这一节是在学生学习了《等差数列》相关知识的基础上,对于《数列》知识的进一步扩充、拓展与深化。教材内容的呈现方式体现了“现实情境—数学模型—应用于实际问题”的特点,其中问题的选择和呈现既有古代问题,又有现代问题,如细胞分裂问题、“一尺之棰,日取其半,万世不竭”、计算机病毒感染问题、银行复利问题等。这些问题情境的素材选择具有丰富性、时代性和创造性,充分体现了等比数列模型的得出是通过大量的实际问题抽象出来的,在现实生活中具有广泛的应用。教材的这种处理方式,注重了对学生从实际问题抽象出数列模型的能力的培养。
二、学情分析
作为教师,不仅要对教材进行准确的分析与把握,对于授课对象的正确认识与了解也是备课环节的重要内容之一。本节课的教学对象是高一学生,高一学生刚刚完成初中数学和高一数学必修1、必修4的学习,已经有了一定的知识储备,但是通常也形成了固定的学习方式和思维习惯,这种定势通常会导致部分学生对于所学知识的“结论”与“过程”产生分裂,使学生过分注意知识结论的套用,而忽略了数学知识的形成过程,这样长期地被动接受知识,势必会影响学生对数学思想方法的领悟和学习能力的提高。因此我认为,教师在传授基础知识、基本技能的同时,应该有计划有目地地加强教学思想方法的指导,注重学生能力的培养,为学生的后续学习和终身发展打下基础。
三、教学目标的确定
基于以上我对教材的理解和学情的分析,并依据新课程标准的要求,我将本节课教学目标确定如下:
1.通过对日常生活中实际问题的分析,对比“等差数列”,建立“等比数列”模型,加强对等比数列概念的理解和认识,体验数学中“类比”的重要思想方法。
2.通过自主探究等比数列的通项公式、等比中项公式,培养学生观察问题、分体问题、概括及归纳问题的能力。在此过程中鼓励学生积极思考,大胆设想,培养学生的创新意识,体会等比数列与指数函数、方程等数学知识的内在联系。
3.应用概念和公式解决问题,培养学生从实际问题中抽象出数学模型的能力以及应用数列知识解决实际问题的能力。
教学重点:理解等比数列的概念,体会等比数列是自然规律的数学模型,探索并掌握等比数列的通项公式、等比中项公式,利用有关知识解决相应的问题。
教学难点:分析具体的问题情境,建立等比数列模型,应用概念和公式解决问题。
四、教法和学法的设置
为了实现教学目标、突出重点、突破难点,我将教法和学法进行如下预设。
教法:针对高一学生的思维特点和认知能力,本节课采用“问题牵引,启发探究”的教学方法。首先,通过“观察几个数列、分析他们的规律”的问题激发学生的求知欲望,以问题的解决作为推动学生学习的原动力。其次,在教学过程中采用启发式和探究式教学,引导学生利用已经学过的《等差数列》知识,发现问题,并亲身体验问题解决的过程,以培养学生积极探索的科学精神。再次,通过观察分析、类比归纳、推理总结,配以分层训练,巩固双基,培养学生的创新意识与辩证思维能力。
学法:根据学法的自主性和差异性原则,本节课的学法设计是让学生自主参与知识的发生、发展、形成的过程,在归纳类比等相关教学活动中掌握知识、发展能力、提高素质。
五、教学程序的设计
根据对教学内容和教学对象的分析,以及对于教材教法的思考,为了更好地完成教学目标,我将教学过程分为五个环节。
环节一 创设情境,激发兴趣。
首先,出示一组实际数列问题:“一尺之棰,日取其半,万世不竭”问题,“细胞分裂”问题,“计算机病毒感染”问题。提出问题:请同学们观察这些数列的特点,你能按照它们各自的规律写出它们的第六项、第七项吗?然后再出示一组数列,提出问题:结合刚才完成的题目,你能发现它们各自有什么规律吗?同学们经过讨论,发现规律。此时教师点明本节课的教学主题。
如此设计导入环节的目的有两个:
通过一些学生能够思考但是又不够清楚的问题创设问题情境,可以激发学生的求知欲,使学习的目的性更加明确。
引导学生通过对具体问题的分析初步认识等比数列,为后续的'等比数列通项公式的推导建立基础,做好铺垫。
环节二 合作探究,培养能力。
针对等比数列通项公式的学习,我安排了以下教学活动:采用“分组讨论,合作探究”的教学方式,让学生继续观察前面所给出的几个数列,并引导学生思考讨论以下问题:
(1)这些数列都是等比数列,它们是否也和等差数学一样有通项公式?
(2)请同学们尝试用数学语言和数学符号将通项公式表示出来。在探究活动之后,由学生总结,教师做适当引导。
这样设计的意图有两个方面:
1.采用探究式的方式解决问题,让学生真正参与知识的形成过程,培养勇于探索科学的态度。
2.在教学安排中渗透“类比迁移、由特殊到一般、由具体到抽象”的数学思想方法。同时,在教学理念上实现“将课堂还给学生,充分发挥学生的主体作用”的新课程理念,将能力培养作为教学的长远目标。
环节三 问题辨析,加深理解。
在这个环节中,我设计如下几个问题:
(1)等比数列中前一项与后一项的比是同一个常数吗?这个常数是等比数列的公比吗?
(2)等比数列的首项或公比可以为零吗?
(3)各项不为零的常数列是等比数列吗?如果是,公比是多少?
(4)有没有既是等比数列又是等差数列的数列?如果有,请你举出一个例子。
这个环节的设计意图是:通过问题辨析,使学生抓住等比数列的特点,加深对等比数列概念和公比的认识与理解,培养学生的思辨能力。
环节四 学以致用,巩固双基。
这个环节我安排四个层次的教学活动。
第一个层次:解决实际问题。在这个环节中,教师展示课件,出示“放射性物质衰变”、“水土资源”、“纸张对折”等问题。布置学生读题、分析题意、交流讨论。
这个层次的设计意图是:让学生进一步体会从实际中问题中抽象出等比数列模型,用等比数列知识解决实际问题,培养学生应用意识,提高解决实际问题的能力。
第二个层次:探究等比中项。
这个层次的设计意图是:让学生自主探究等比中项公式,辨析等差中项与等比中项的差别,加深对两个中项公式的对比。
第三个层次:熟练掌握公式。
这个层次的设计意图是:通过例题精讲和习题演练,加强对等比数列知识的运用与理解。
第四个层次:探究活动。
鼓励学生描点作图,画出课本探究活动中要求的图像,说出通项公式。
这个层次的设计意图是:探究等比数列的图像与指数函数的图像之间的关系,体会等比数列是一种特殊函数。
环节五 同化知识,构建体系。
此环节包括小结、板书、作业布置三部分。
1.小结是把新知识纳入认知结构的必要环节,有助于学生发挥知识系统的整体优势,本节课我将从数学知识和数学思想方法两个方面进行小节。
2.板书设计为概念、推导、例题和总结四部分,将教学内容清晰地展示在学生面前。
3.作业在教学中起着巩固课内知识、延伸课外知识的作用,我将作业的布置分为三个层次:课后作业,巩固双基;补充练习,以拓展知识外延;上网查找资料,查阅生活中可以抽象为等比数列模型的实际问题。
结束语:学生的发展是一个长期的过程,关注学生终身发展是教师的职责,也是新课程实施的理念与初衷。作为教师,要想方设法地为学生创设课堂教学环境,有目的、有意识地进行能力培养,这样才能真正做到以“学生发展”为教学之本。
高中数学等比数列教案 10
一、大纲与教材
等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。
第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作用决定的。
1、数列有着广泛的实际应用。例如产品的规格设计、储蓄、分期付款的有关计算等。
2、数列有着承前启后的作用。数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。
3、数列是培养提高学生思维能力的好题材。学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。
本节课既是本章的重点,同时也是教材的重点。等比数列前n项和前面承接了数列的定义、等差数列的知识内容,又是后面学习数列求和、数列极限的基础。
本节的重点是等比数列前n项和公式及应用,难点是公式的推导。
二、教学目标
1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。
2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。
3、思想目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。
三、教学程序设计
1、导言:
本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第 1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?
这样引入课题有以下三点好处:
(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。
(2)故事内容紧扣本节课教学内容的主题与重点。
(3)有利于知识的.迁移,使学生明确知识的现实应用性。
2、讲授新课:
本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。
等比数列的前n项和公式的推导是本节课的难点。
依据如下:
(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2) 从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3) 从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:
(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入 ,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为 ,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有 ,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和 ……+ 的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式 ,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:
方法二:由等比数列的定义得: 运用连比定理,
后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
依据如下:
(1)新大纲中有较高层次的要求。
(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。
(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。
突出重点方法:
(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书): ,强调公式的应用范围: 中可知三求二。
(2)运用纠错法对公式中学生容易出错的地方,即公式的条件 ,以精练的语言给予强调,并指出q=1时, 。再有就是有些数列求和的项数易错,例如 的项数是n+1而不是n。
(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。
四、习题训练
本节课设置如下两种类型的习题:
1. 中知三求二的解答题;
2.实际应用题.
这样设置主要依据:
(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题 。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性。
五、策略、方法与手段
根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。
案例为浅层次要求,使学生有概括印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。
六、个人见解
在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。
【高中数学等比数列教案】相关文章:
等比数列的性质07-09
等比数列教学实录设计07-01
等比数列的前n项和教学设计06-08
高中数学教学设计07-02
高中数学述职报告07-30
高中数学教学总结07-03
高中数学怎样学习07-09
高中数学教学反思07-03
高中数学实习总结05-11
高中数学解题技巧06-26