- 相关推荐
八年级的数学教案:平方差公式
平方差公式
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;
2、能用平方差公式进行熟练地计算;
3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.
学习重难点:
重点:能用平方差公式进行熟练地计算;
难点:探索平方差公式,并用几何图形解释公式.
学习过程:
一、自主探索
1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)
(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.
3、你能用自己的语言叙述你的发现吗?
4、平方差公式的特征:
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的a与b可以是数,也可以换成一个代数式。
二 、试一试
例1、利用平方差公式计算
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
例2、利用平方差公式计算
(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2
三、合作交流
如图,边长为a的大正方形中有一个边长为b的小正方形.
(1)请表示图中阴影部分的面积.
(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b
(3)比较(1)(2)的结果,你能验证平方差公式吗?
四、巩固练习
1、利用平方差公式计算
(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)
2、利用平方差公式计算
(1)803797 (2)398402
3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以
4.下列多项式的乘法中,可以用平方差公式计算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b- a) D.(a2-b)(b2+a)
5.下列计算中,错误的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]
6.若x2-y2=30,且x-y=-5,则x+y的值是( )
A.5 B.6 C.-6 D.-5
7.(-2x+y)(-2x-y)=______.
8.(-3x2+2y2)(______)=9x4-4y4.
9.(a+b-1)(a-b+1)=(_____)2-(_____)2.
10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
11.利用平方差公式计算:20 19 .
12.计算:(a+2)(a2+4)(a4+16)(a-2).
五、学习反思
我的收获:
我的疑惑:
六、当堂测试
1、下列多项式乘法中能用平方差公式计算的是( ).
(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[
2、填空:(1)(x2-2)(x2+2)=
(2)(5x-3y)( )=25x2-9y2
3、计算:
(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)
4.利用平方差公式计算
①1003997 ②14 15
七、课外拓展
下列各式哪些能用平方差公式计算?怎样用?
1) (a-b+c)(a-b-c)
2) (a+2b-3)(a-2b+3)
3) (2x+y-z+5)(2x-y+z+5)
4) (a-b+c-d)(-a-b-c-d)
2.2完全平方公式(1)
【八年级的数学教案:平方差公式】相关文章:
数学完全平方公式与平方差公式06-27
平方差公式教学设计10-20
《平方差公式》评课稿07-23
初中数学平方差公式的运用06-28
数学平方差公式教学指引06-28
数学《平方差公式》导学案课件06-28
初中数学《平方差公式》教学反思06-28
高中数学的平方差公式大全06-29
八年级数学《平方差公式因式分解》评课稿03-24
《常见公式》数学教案06-28