数学3π/2+α的三角函数诱导公式知识点

时间:2023-12-18 13:26:27 赛赛 其他 我要投稿
  • 相关推荐

数学3π/2+α的三角函数诱导公式知识点

  在学习中,说起知识点,应该没有人不熟悉吧?知识点在教育实践中,是指对某一个知识的泛称。哪些才是我们真正需要的知识点呢?下面是小编帮大家整理的数学3π/2+α的三角函数诱导公式知识点,欢迎阅读,希望大家能够喜欢。

数学3π/2+α的三角函数诱导公式知识点

  数学3π/2+α的三角函数诱导公式知识点

  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。

  3π/2+α与α的三角函数值之间的关系

  弧度制下的角的表示:

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sec(3π/2+α)=cscα

  csc(3π/2+α)=-secα

  角度制下的角的表示:

  sin(270°+α)=-cosα

  cos(270°+α)=sinα

  tan(270°+α)=-cotα

  cot(270°+α)=-tanα

  sec(270°+α)=cscα

  csc(270°+α)=-secα

  公式一多,同学们就会记忆失控,所以三角函数的诱导公式记忆方法也很重要。

  初中数学正方形定理公式

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

  初中数学平行四边形定理公式

  同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

  初中数学直角三角形定理公式

  下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

  初中数学等腰三角形的性质定理公式

  下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  初中数学三角形定理公式

  对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的同一三角函数的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角与 -的三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  公式五: 利用公式一和公式三可以得到2与的三角函数值之间的关系:

  sin(2)=-sin

  cos(2)=cos

  tan(2)=-tan

  cot(2)=-cot

  公式六: /2与的三角函数值之间的关系:

  sin(/2+)=cos

  cos(/2+)=-sin

  tan(/2+)=-cot

  cot(/2+)=-tan

  sin(/2-)=cos

  cos(/2-)=sin

  tan(/2-)=cot

  cot(/2-)=tan

  推算公式:3/2与的三角函数值之间的关系:

  sin(3/2+)=-cos

  cos(3/2+)=sin

  tan(3/2+)=-cot

  cot(3/2+)=-tan

  sin(3/2-)=-cos

  cos(3/2-)=-sin

  tan(3/2-)=cot

  cot(3/2-)=tan

  诱导公式记忆口诀:“奇变偶不变,符号看象限”。

  “奇、偶”指的是/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角看做锐角,不考虑角所在象限,看n(/2)是第几象限角,从而得到等式右边是正号还是负号。

  符号判断口诀:

  “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。

  “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。

【数学3π/2+α的三角函数诱导公式知识点】相关文章:

初中数学三角函数的诱导公式的知识点总结06-26

中考数学三角函数诱导公式06-28

初中数学三角函数诱导公式06-26

数学教案:三角函数的诱导公式06-28

中考数学必考三角函数的诱导公式06-26

数学三角函数诱导公式复习重点09-28

初中数学π-α的三角函数诱导公式大全06-27

中考数学《三角函数诱导公式》复习辅导06-26

初中数学三角函数值诱导公式总结06-26