- 相关推荐
关于数学等差和等比数列通项公式
关于数学等差和等比数列通项公式
1,a(1)=a,a(n)为公差为r的等差数列。
1-1,通项公式,
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
1-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同样,可用归纳法证明求和公式。(略)
2,a(1)=a,a(n)为公比为r(r不等于0)的等比数列。
2-1,通项公式,
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用归纳法证明等比数列的通项公式。(略)
2-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1时,
S(n)=a[1-r^n]/[1-r]
r=1时,
S(n)=na.
同样,可用归纳法证明求和公式。
【数学等差和等比数列通项公式】相关文章:
高二数学等比数列的前n项和教学设计07-02
等比数列的前n项和教学设计06-08
初中数学余弦函数公式12-02
数学公式口诀速记02-03
初中数学定理公式总结11-13
初中数学双曲函数公式04-06
小学有关形状的数学公式08-15
初中数学公式定理大全10-09
初中数学公式定理总结07-03
高中数学等比数列教案(精选10篇)10-26