高中数学函数知识点最新总结

时间:2022-07-02 09:04:34 总结范文 我要投稿
  • 相关推荐

高中数学函数知识点最新总结

  高中数学函数知识点包含哪些呢?今天小编为大家准备了高中数学函数知识点最新总结,欢迎阅读!

高中数学函数知识点最新总结

  高中数学函数知识点最新总结

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数 b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的`表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1.当时间t一定,距离s是速度v的一次函数。s=vt。

  2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人补充)

  1.求函数图像的k值:(y1-y2)/(x1-x2)

  2.求与x轴平行线段的中点:|x1-x2|/2

  3.求与y轴平行线段的中点:|y1-y2|/2

  4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

  反比例函数

  形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  当K>0时,反比例函数图像经过一,三象限,是减函数

  当K<0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  指数函数

  (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2) 指数函数的值域为大于0的实数集合。

  (3) 函数图形都是下凹的。

  (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7) 函数总是通过(0,1)这点。

  (8) 显然指数函数无界。

  奇偶性

  1.定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:

  ①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

  2.奇偶函数图像的特征:

  定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。

  3. 奇偶函数运算

  (1) . 两个偶函数相加所得的和为偶函数.

  (2) . 两个奇函数相加所得的和为奇函数.

  (3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

  (4) . 两个偶函数相乘所得的积为偶函数.

  (5) . 两个奇函数相乘所得的积为偶函数.

  (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.

【高中数学函数知识点最新总结】相关文章:

初中函数知识点总结07-29

关于函数与方程的知识点总结10-17

函数中自变量的知识点总结08-02

二次函数知识点总结12-19

初中数学所有函数的知识点总结11-22

高中函数基本性质知识点总结07-25

高一数学函数知识点总结12-01

高中数学知识点总结08-10

高中数学导数知识点总结06-24

高中数学几何定理知识点总结06-08