- 相关推荐
简述生物硝化
硝化细菌是一类好氧性细菌,包括亚硝酸菌和硝酸菌。生活在有氧的水中或砂层中,在氮循环水质净化过程中扮演着很重要的角色。以下是小编为大家整理的简述生物硝化,供大家参考借鉴,希望可以帮助到有需要的朋友。
资料1:
硝化与反硝化
利用好氧颗粒污泥实现同步硝化反硝化
1、生物脱氮与同步硝化反硝化
在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X在缺氧条件下被反硝化菌还原为N2(反硝化)。
硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如
Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(SimultaneousNitrificationDenitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,反硝化过程的产碱会导致OH-积累而引起PH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了PH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。
2、实现同步硝化反硝化的途径
由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。
①利用某些微生物种群在好氧条件下具有反硝化的特性来实现SND。研究结果表明,Thiosphaera、Pseadonmonasnautica、Comamonossp.等微生物在好氧条件下可利用NOX-N进行反硝化。如果
将硝化菌和反硝化菌置于同一反应器(曝气池)内混合培养,则可达到单个反应器的同步硝化反硝化。尽管这些微生物的纯培养结果令人满意,但目前普遍认为离实际应用尚有距离,主要原因是实际污泥中这些菌群所占份额太小。
②利用好氧活性污泥絮体中的缺氧区来实现SND。通常曝气池中的DO维持在1~2mg/L,活性污泥大小具有一定的尺度,由于扩散梯度的存在,在污泥颗粒的内部可能存在着一个缺氧区,从而形成有利于反硝化的微环境。以往对曝气池中氮的损失主要以此解释,并被广泛接受。如果污泥颗粒内部厌氧区增大,反硝化效率就相应提高。
大量研究结果表明,活性污泥的SND主要是由污泥絮体内部缺氧产生。要实现高效率的SND,关键是如何在曝气条件下(不影响硝化效果)增大活性污泥颗粒内部的缺氧区以实现反硝化。要达到这一目
的,有两种途径可供选择,即减小曝气池内混合液的DO浓度和提高活性污泥颗粒的尺度。
降低曝气池的DO浓度,即减小了O2的扩散推动力,可在不改变
污泥颗粒尺度的条件下在其内部形成较大的缺氧区。丹麦BioBalance公司发明的SymBio工艺即建立在此理论基础之上(曝气池DO维持在1mg/L以下),但在低DO浓度下硝化菌的活性将会降低,且极易形成诸如Sphaeroticulenatans/1701和H.Hydrossis之类的丝状菌膨胀。因此,提高SND活性污泥颗粒的尺度,在不影响硝化效率的前提下达到高效的SND可能是最佳选择。然而,由于曝气池中气泡的剧烈扰动作用,活性污泥颗粒在曝气条件下很难长大,因此限制了活性污泥法SND效率的提高。
实现活性污泥法的高效同步硝化反硝化,必须在曝气状态下满足以下两个条件:
①入流中的碳源应尽可能少地被好氧氧化;
②曝气池内应维持较大尺度的活性污泥。
在连续流好氧条件下硝化发生在碳氧化之后,入流中的碳源被碳氧化或合成为细胞物质,只有当BOD浓度处于较低水平时硝化过程才开始。此时,即使污泥尺度较大也能形成有利于反硝化的微环境,但外源碳已消耗殆尽,只能利用内源碳进行反硝化,而内源水平反硝化的反应速率小,因此SND效率就低。在非连续条件下微生物的代谢模式则截然不同,入流中的碳源可在很短的时间内被微生物大量吸收,并以聚合物或原始基质的形态储藏于体内,从而使曝气池中的碳源浓
度迅速降低,为硝化创造良好条件。如果颗粒污泥较大,形成有利于反硝化的微环境,则微生物可利用预先储存的基质进行反硝化。由于反硝化处在基质水平,反硝化的速度快,SND效率就高。
3、好氧颗粒污泥的培养
活性污泥工艺的运行好坏主要依赖于反应器中形成污泥的质量。最新研究结果表明,在活性污泥反应器中创造一定条件可培养出高活性的SND颗粒污泥,其颗粒尺度在500μm左右,具有良好的沉淀性能和较高的SND速率。
根据目前普遍接受的污泥絮体理论及在曝气池中通常观测到的污泥颗粒大小(约为100μm)可知,在某些特定条件下污泥颗粒的紧密层可进一步增大,进而形成SND颗粒污泥。另有研究结果表明,在反硝化条件下活性污泥絮体能形成性能优良的颗粒污泥。
以往认为在曝气池中由于水流紊动剧烈、剪切力较大,污泥颗粒尺度在达到100μm后就很难增大了。采用微氧电极对DO在颗粒内部扩散的研究结果表明,当DO为1~2mg/L时,O2在污泥颗粒内的扩
散深度约为100μm,因此在单纯的碳氧化曝气池中的污泥尺度若再增大,内部将进入厌氧状态。目前对如何在曝气池中提高活性污泥尺度的研究报道还较少,最近Morgeoth采用厌氧颗粒污泥培养中的水力筛分法,以碳源为基质在USB反应器内培养出好氧颗粒污泥,其颗粒尺度可达1~3mm,具有优良的沉淀性能。但由于曝气池中O2的供给是限制因素,当颗粒变大后其平均活性并不高(内部大量污泥处于厌氧状态),且随着运行时间的延长,污泥活性可能进一步退化。
在SBR系统中采用缩短沉降时间可截留住那些具有较高沉速的生物颗粒,培养出的颗粒污泥可达3.3mm(也有仅为0.3~0.5mm的),其中几乎不含丝状菌,全部由细菌组成。颗粒化不是由微生物种类决定的,而是与操作条件有关,曝气池中的搅动强度或混合程度及曝气产生的剪切力对颗粒污泥的形成都有较大影响。好氧颗粒污泥的形成机制目前还不完全清楚。在SBR反应器中,DO保持在0.7~1.0mg/L时运行一个月可基本完成颗粒化,且COD、NH3-N、TN去除率高达95%、
95%、60%,颗粒中无丝状菌,SVI为80~100mL/g,SS为4~4.5g/L。好氧颗粒污泥在显微镜和曝气状态下都可观察到,其活性即使在DO<1mg/L时也很高,有机物和氨氮负荷可达1.5kgCOD/(m3?d)和0.18kgNH3-N/(m3?d)。
可形成好氧颗粒污泥的微生物不仅仅局限于甲烷菌,人们观察到酸化菌、硝化菌、反硝化菌及好氧异养菌也能形成颗粒污泥。好氧颗粒污泥主要由杆菌组成,无丝状菌。这些都是在连续运行操作中发现的,目前在SBR系统中也有发现(由于颗粒污泥的快速沉降还可有效缩短沉降时间)。
资料2:
培养硝化细菌的方法
水族箱过滤器只具备物理过滤和化学过滤的功能,而降解水中毒素的硝化细菌并未繁殖起来,需要在过滤系统开始运转后逐渐进行培养。若想尽快放入观赏鱼,就需要采取措施加快培养硝化细菌的进度。通常有以下几种快速培养硝化细菌的方法:
(1)利用旧滤材或滤砂移植硝化细菌饲养过观赏鱼的旧水族箱中滤材或底砂上都附着大量的硝化细菌,若能将旧滤材或滤砂移入新设立的水族箱引入菌种,可大大促进硝化细菌繁殖的速度,至少节约一半的培养时间。
(2)利用污染源刺激硝化细菌的繁殖在引入菌种后,要配合过滤、充气促进水流循环,并在水族箱中放入4~5个新鲜的去壳蛤蜊或虾,利用肉质腐烂生成的毒素作为硝化细菌的营养,刺激菌种大量繁殖。还可以购买一些小型易养的实验鱼,放入几条,利用它们的排泄废物、食物碎屑提供有机物废料,促进硝化细菌的繁殖。
(3)添加人造硝化细菌目前市售的人造硝化细菌,有液态、粉末状、干燥孢子化等不同类型,可以满足观赏鱼爱好者迫切尽快饲养的要求。
培养生物过滤系统的要点
在进行水族箱生物过滤系统培养时,要掌握以下几个要点:
(1)不宜频繁换水 大量的换水,容易破坏水族箱中硝化细菌的繁殖,使附着于底砂滤材中的硝化细菌随换水大量散失,同时水质的频繁改变也无法维持硝化细菌繁殖的适宜pH值,因此换水不必过勤,1~2个月换20%的水即可。
(2)正确清洗滤材 经过长期饲养,过滤系统的滤材上会附着大量硝化细菌,但同时也会积累许多杂质污物,需定期清洗。清洗时,用原水族箱的海水将滤材轻轻挤压揉搓,千万不能用自来水冲洗或使用洗涤剂等化学物质。
(3)渐次追加观赏鱼 刚设立的新缸要逐渐增加观赏鱼数量,不可一次放入过多,以免大量的残饵和排泄物产生的毒素超过硝化细菌氧化分解的能力,造成水质污染和观赏鱼死亡。
(4)慎用治疗药物 观赏鱼生病需要治疗时,最好能隔离治疗。因为预防和治疗鱼病的消毒剂、抗生素等药物,不同程度地对硝化细菌的活力有所影响。即使在原缸中治疗,治疗完毕后,也要及时利用活性炭吸附残留药物或进行换水,以降低药物浓度,并重新添加人工硝化细菌,维持硝化细菌群落的稳定。
家庭如何培养硝化细菌
在新鱼缸中放入几只死虾,过几天再捞出,能够很快的培养出硝化细菌。这种方法就是使水质受到污染,水体中充满许多硝化细菌的食物,使它快速生长繁殖。就是这样培养的,但要注意的是,放的虾仁不用取出,虾仁自己会被细菌费解掉的,等到水混之后,再放消化细菌,几天后你就会发现水变清澈,第一次不要等水太清澈,再放一次虾仁,又会出现虾仁被分解,水混,水清澈的过程,反复几次就好了,要提醒你的是,虾仁量要一次比一次的多,中途不要放活性炭和开蛋白器,最后一次的时候要把水养清澈后在放鱼并且放硝化细菌和开蛋白器2天~3天净化,中途你可以根据情况添加几次硝化细菌,如果你第一次进去量比较大,那你养水的时间养长,同时污染量也要重,最后就是在放虾仁的时候要把壳取掉,只有嫩肉硝化细菌才会分解的快,这样重复了4次,用时1个多月,最后一次放了一大堆虾仁,水变得象牛奶一样浑浊,但1天后就变清,2天后变清澈,这说明已经有大量细菌在工作,只要不超过这堆虾仁的十分之一的污染量就不会死鱼,所以第一次就可以进很多鱼来闯缸。
裸缸建立生态缸的简单步骤
1、建缸初期有可能引入有机物过多引起初期氨及亚硝酸盐浓度过高,新手在无检测手段的情况下,容易导致闯缸鱼牺牲;
2、操作过程过于复杂,增加不可控因素,新手难以掌握,难以安全实现良好效果;
3、有些步骤可以省略,而且省略后并不影响最终效果。
以100升水的水族箱为例。
一、开缸前的准备:
设备:水族箱(废话)、外滤桶(其它能容纳玻璃环的过滤器也可以)、打氧泵(包括软管及沙头等)、底砂(可以取消)。
药剂:喜瑞去铵及亚硝酸离子液(简称硝化细菌,亚峰商城有售)。
闯缸鱼:廉价的健康的清洁工作鱼、饲料鱼等。
外滤桶的滤材设置(按水流方向):
1、粗滤棉(两层),主要作用是进行物理预过滤,如果包在外滤桶的进水口外,则更便于更换;
2、生化棉,主要作用是培养分解有机物的消化细菌,能提高水质澄清度;
3、玻璃环,一般情况下,玻璃环体积要占全缸水体积的3~5%,主要作用是培养硝化细菌,以保证水质无毒性;
4、粗滤棉(一层),主要作用是物理过滤,打散、吸附细菌的代谢废物。
其它种类的过滤设备可参照上述外滤桶进行设置。
二、开缸过程:
第一天,安装设备——注水——铺砂(5cm左右厚度,或不铺砂)——运转设备——检查是否有漏水之处,以及设备安装是否有问题。
第二天,排水再重新注水(经过曝气处理后的自来水即可)——运转设备(过滤及打氧设备,从此不再关闭)——加入状态健康、体质健壮的闯缸鱼,按说明加入硝化细菌。(其后连续十天,按说明继续补充硝化细菌)
第七天左右,据了解一些高手开缸的经验,此时分解NH3/NH4的亚硝酸菌已经初步建立,但硝酸菌还未能跟上步伐,此时水体内NO2的含量会出现峰值,闯缸鱼容易出现不适。如果此时闯缸鱼无任何异常,进食活跃,则可在第十天起逐日继续增加闯缸鱼的数量,并逐渐增加投喂量。
一个月后,生化系统就基本稳定下来了,可以考虑加入贵价主力鱼了。
三、日常维护:
定时换水(每周换三分之一到五分之一),换水周期可逐渐加长,换水量可逐渐减少,以不出现褐藻为限。换入的水如果是自来水,要经过24小时的打气,以去除自来水中的余氯,减少对硝化系统及鱼的伤害。
定量定时喂食,不要让鱼吃得过饱,不要留残饵。
四、注意事项:
a、加入闯缸鱼后,如果出现异常,则尽快换水(部分换水)。
b、过滤及打氧设备尽量不要中断运转。
c、过滤桶中的玻璃环总体积要达到全缸水体积的3~5%;
d、水体含氧量与生物过滤效率相关,在不影响观赏的前提下,可增加打氧。
e、硝化细菌建议选择进口名牌的,国产杂牌的不如不用。(个人意见)
f、过滤系统的物理过滤及生物过滤,仅能保证水质的清澈及无毒性。对于具体鱼种而言,水温、PH值、硬度都是影响的重要因素。建议参考具体资料,对此进行相应调整。
【简述生物硝化】相关文章:
生物柴油及生产简述06-23
生物流变学简述06-22
简述生物化学的学习心得5篇03-29
简述生物化学的学习心得(5篇)03-29
简述生物化学的学习心得2篇03-05
简述生物化学的学习心得(汇编5篇)03-29
简述专业与生活12-10
网站LOGO简述07-14
陶瓷起源历史简述06-23