《倒数的认识》教学实录
《倒数的认识》这一课的核心内容是倒数的意义和求法。倒数的意义属于概念的教学。下面是小编为你带来的《倒数的认识》教学实录,希望对你有所帮助。
一、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们拿出听算本,我们听算几道题。
师:第一题: 3/8×8/3…第二题:7/15×15/7…第三题:3×1/3…第四题:1/80×80……
生:笑……
师:有些同学在下面偷偷地笑了!你们笑什么呀?
生:(齐)太简单了!乘积都是1!……
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始……
师:一分钟到,停!谁愿意把你写的念出来,和大家共同分享?
生1:2/9×9/2=1,5×1/5=1,3/10×10/3=1,1/70×70=1,0.25×4=1,0.125×8=1,0.1×10=1,0.01×100=1
师有选择的板书在黑板上。
师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。
生:(抢着说)我还有更多的……
生2:1×1=1,0.25×4=1,0.125×8=1,1/2×2=1,1/3×3=1,1/4×4=1,
1/5×5=1,1/6×6=1,1/7×7=1,1/8×8=1,1/9×9=1
师:太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)
不过我比你们更厉害。我不但能写出这么多算式,而且还能猜出你们写的是什么?信不信?不信?只要你说出你写的第一个数,我就能猜出你写的第二个数是什么?
学生在下面窃窃私语。有说我也会的,也有说不信的……
师:你要能猜出来,也可以来试一试呀。
生1:老师,我请你猜。
师:好。
生1:我写的第一个数是4。
师:那你写的第二个数是1/4。
生1:不对,我写的是0.25。
师:是吗,1/4和0.25相等呀。
生2:老师,我也请你猜。
师:都来为难我了!
生2 :我写的第一个数是10/8。
师:那你写的第二个数是8/10或是0.8。
生2:老师,你没化成最简分数呀!
师:你的也不是最简分数呀。
师:你们也能猜吗?
生(齐说):能。
师:为什么能猜到?
生:因为这两个数的乘积是1。
师:对,你们所写的这两个数的乘积都是1。像这样的乘积是1的两个数,我们把它称之为互为倒数。
教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如2/9和9/2和乘积是1 ,我们就说2/9和9/2互为倒数。(师板书2/9和9/2互为倒数)
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
生3:我举个例子来说,比如“2/9和9/2互为倒数”就是说2/9是9/2的倒数,9/2是2/9的倒数。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
生:学过,约数和倍数。比如:15是3的倍数,3是15的约数。
师:对,我们今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。
师:5和1/5的积是1,我们就说……(生齐说)
师:0.25×4=1,这两个数的关系可以怎么说?
生1:0.25的倒数是4,4的倒数是0.25。
生2:这两个数不是分数,好像不可以说它们互为倒数?
师:可以吗?
生:可以,因为乘积是1的两个数叫做互为倒数,这两个数的乘积也是1。
师强调只要是乘积是1的两个数都是互为倒数。
师:看来同学们学得不错。现在老师要考考大家,是不是真正理解了倒数的意义。
1、判断:
(1)得数是1的两个数叫做互为倒数。
(2)因为10×1/10=1,所以10是倒数,1/10是倒数。
(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
2、展台出示练习十T1、T2,口答。
(T1:3/4×( )=1 7×( )=1
T2:下面哪两个数互为倒数?
4/3 7/6 8 6/7 3/4 1/8)
二、探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。那么0.25和4呢,好像没有这一特点呀?
生:如果把0.25化成分数就是1/4,4就可以看成4/1,分子和分母也调换了位置。
生:老师,如果分子是0的话,怎么办?
师:这个问题我们记着,待会解答好吗?
生:好
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
生汇报,并汇报写的方法。
师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)
师:那18的倒数是什么?它可是没有分子和分母呀?
生:把18看成是分母是1的分数,再把分子分母调换位置。
师根据学生的回答及时板书。
师:那1又2/7的倒数呢?
生思考。
生1:1又2/7的倒数是1又7/2。
生2:不对,要先把1又2/7化成假分数9/7,再交换位置。1又2/7的倒数是7/9。
师:哪个答案才是正确的呢?
我们一起来检验检验。
怎么检验呢?(生齐说看它们的乘积是不是1。)
【《倒数的认识》教学实录】相关文章:
《倒数的认识》的课堂教学实录与评析07-04
《倒数的认识》课堂实录07-02
《倒数的认识》的课堂实录07-02
倒数的认识课堂实录07-02
关于《倒数的认识》课堂实录07-02
《认识倒数》优质课堂实录07-02
《倒数的认识》优质课课堂实录07-02
《倒数的认识》教学设计07-04
倒数的认识教学设计07-04
《倒数的认识》教学设计02-17