- 相关推荐
圆的面积数学课堂实录
从心理学角度看,猜想是一项思维活动,是学生有方向的猜测和判断,包含了理性的思考和直觉的判断;从学生的学习过程来看,猜想应是学生有效学习的良好准备,它包含了学生从事新的学习或实践的知识准备、积极动机和良好情感。一说起猜想,人们马上就会联想到著名的歌德巴赫猜想。接下来,小编为你带来圆的面积课堂实录,希望对你有帮助。
篇一:圆的面积课堂实录
学生的学习过程,并非要出现像歌德巴赫猜想那样的著名推断,但应具有知识的再发现和再创造过程。培养学生的猜想意识,引导学生进行积极的猜想,正是培养学生进行知识再发现和再创造的良好开端。
教学片段一
在学习完圆的面积后,教师让学生做这样一道题:有两块大小一样的正方形钢板,其中一块冲出4块大小一样的圆形钢片(如图1甲),另一块冲出9块大小一样的圆形钢片(如图1乙)。问哪一块钢板所剩下的脚料多?立刻有学生大胆猜想:
生:图1(甲)所剩下的脚料多一些,因为图1(甲)看起来空隙大。
生:图1(乙)剩下的脚料多一些,因为图1(乙)的空隙多。
可见学生这时的猜想是盲目的。教师对这些猜想没有简单地否定,而是让学生解决一个简单的.问题(如图2),求正方形内切圆的面积占该正方形面积的百分之几?计算后得出,正方形内切圆的面积占该正方形面积的78.5%。这时再让学生猜想。
生c:所剩下的脚料一样多。
师:为什么?
有一个学生将图1中的(甲)、(乙)两图添作辅助线,如图3所示。他说:正方形1/4的78.5%再乘以4和正方形1/9的78.5%再乘以9其结果是一样的。虽然表述不是很完整、到位,但能提出这样新的假设,充分体现了学生的创造潜能。最后通过计算验证,使学生享受到猜想的成功。
教学片段二
在一次课上做练习时,有一个平时就很爱动脑筋的学生突然说:老师,我有一个奇怪的发现,我量了量桌子的长和宽,发现长是宽的1.6倍多一点,又量了量数学课本的长也是宽的1.6倍多一点,再量作业本结果也是一样的。我想,这里一定有数学问题。
一石激起千层浪,别的学生也动手量起来,不一会儿,有的学生说:对,是这样。有的学生反对:这是偶然,铅笔盒、黑板就不是这样。
一会儿,教室里的争论声小了下来,学生的眼睛齐刷刷地望着老师。老师首先对那位学生说:你善于观察,又勤于思考,很了不起。接着,老师说:想想生活中还有哪些长方形和你们的课桌比例差不多?学生举出了生活中的许多例子。
师:就拿电视屏幕为例吧,如果它很扁或很方,会有什么感觉?
生:很有创意。
生:好像不太方便,看起来有点怪,图像也就变形了。
生:我知道了,按照一定的比例比较美观。
生:他说得对,可铅笔盒只要能放进铅笔就行了,太宽反而不美观、不实用了,我觉得先要实用,才能美观。
师:大家都很棒,我来给大家提供一个线索黄金分割,我们查查资料,好吗?
几天后,一张张资料卡放在教师手中。通过这次经历,学生享受到了猜想的成功,也进一步感受到了数学王国的瑰丽。
评析
数学方法理论的倡导者G波利亚曾说过,在数学领域中,猜想是合理的、值得尊重的,是负责任的态度。他认为,在有些情况下,教猜想比教证明更为重要。我们认为,猜想可分为三个层次:
一、质疑猜想的开始。
让每个学生在已有的知识经验、能力水平和学习方法的基础上提出问题,并进行积极的猜想,这有助于提高学生的学习兴趣,活跃思维,促进智力的发展与提高。
二、假设猜想的深入。
问题提出后,学生经过反复思考、联想、顿悟,结合已有的知识和生活经验提出自己的假设。假设,从思维角度讲,就是一种猜想。这样的思维过程,是充分发挥学生创新能力和主体意识的过程。
三、实践猜想的验证。
只有猜想没有行动,那只能是空想。把猜想与探索实践紧密结合,可以产生猜想的良性循环。
不同的学生会有不同的猜想,但都是学生的主动思维的过程,都包含着创新因素。猜想是一项思维活动,包含了理性的思考和直觉的判断。因此学生的猜想可能是经过反复思考的,符合逻辑的,但更可能是稚嫩无据的异想天开。不管是哪一种情况,教师都应给予鼓励,精心保护学生积极猜想的精神,并引导他们享受猜想的成功体验,更好地发挥他们的创造力。
篇二:圆的面积课堂实录
一.教材分析
1.教材内容
本节内容是从一个小狗活动的实例出发结合学生的生活经验引出圆的面积。
2.教材的地位和作用
在此之前,学生已经学过了圆的周长,弧长等有关概念、公式,在这个基础上,学好本节课,掌握圆的面积公式和有关计算,为学生今后学习和圆有关的图形的面积奠定了基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。
二.目标分析
在素质教育背景下的数学教学应以学生发展为本,培养能力为重,同时也要强化应用意识,所以教学目标的确定应建立在学生的学习过程上,而预备年级的学生只具备一定的形象思维能力,抽象思维能力还不完备,所以根据本节课的特点确定如下教学目标.
1.知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题.
2.能力目标:
使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
3.情感目标:
通过实例引入,让学生体验数学于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三.重点难点分析
重点:
圆的面积公式的推导过程以及圆的面积公式的应用。
难点:
在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。
四.教法分析
1.教法分析:
针对刚迈入初中的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
2.学法指导
通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
3.教学手段
为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
五.教学过程
1.复习
(1)长方形面积公式
(2)平行四边形面积公式 平行四边形面积公式的求法是通过割补转化为长方形面积来解决。
2.创设问题情景,引入课题 一只小狗被它的主人用一根长1米的绳子栓在草地上,问小狗能够活动的范围有多大?
问题:
1.小狗能够活动的最大面积是一个什么图形?
2.如何求圆的.面积呢?
3.师生互动,探索新知
(1)引导: 平行四边形面积可以转化成长方形面积,那么圆的面积是否也可以转化成长方形面积来解决呢?
(2)实验操作: 教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。
(3)动画展示 让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。 当我们把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(4)得出结论:
启发
1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
启发
2:长方形的长、宽与圆有什么关系呢? 再次展示动画。 设圆的半径为r 启发学生寻找规律,由圆的周长为2πr,推导得出长方形长为πr,宽为r, 圆的面积 。
4.实际应用
(1)利用公式解决实际问题: 求小狗活动范围的最大面积问题?
(2)例题讲解 例题1:已知一个圆的直径为24分米,求这个圆的面积 注意书写格式:
1)写出公式
2)代入数字
3)计算结果
4)写出单位。
(3)巩固思考
小明家新买了一个圆桌,妈妈让他求桌面的面积。你能够帮助小明回答吗?
(4)巩固练习
例2.一个圆形花坛,周围栏杆的长是25.12米,这个花坛的种植面积是多少?(π≈3.14)
练习:
1.判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。 ( )
(2)半径为2厘米的圆的周长与面积相等。 ( )
2.把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
40c3.一块直径为40厘米的圆形铝板上,
有4个半径为5厘米的小孔,这块铝板 的面积是多少
5.归纳小结 为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从以下方面小结,学生先回答,教师归纳总结。体现学生为主体,教师为主导的教学思想。
(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
6.布置作业 P105练习3.3
(1)—2,3。 P106习题3.3—1,2。
六.评价分析:
精心设计问题情景,积极引导,启发学生参与公式的形式过程,但课堂教学是一个动态过程,学生的思维又常常受到课堂气氛,突发事件的影响,所以教师应根据课堂实施和学生反馈的信息(举手情况,题目的解答情况,学生讨论小结的结果情况)因势利导,随机应变,调整好教学环节,使课堂教学效果达到最佳状态.同时也应该根据学生作业反馈的信息及时作好教后感笔录,以便今后更好地改进教学,提高教学质量。圆的面积第二节课的目的主要是巩固练习。
【圆的面积数学课堂实录】相关文章:
圆的面积课堂实录07-02
数学《圆的认识》课堂实录07-02
《圆的周长》数学课堂实录07-02
面积面积单位课堂实录07-02
小学数学圆的面积教案(精选12篇)02-16
面积和面积单位课堂实录07-02
小学数学《圆的面积》的课堂教学实录07-04
小学数学《圆的面积》的教学案例反思07-03
面积的初步认识数学课堂实录07-02
圆的面积课后反思08-09