- 相关推荐
新人教版七年级数学下册《不等式及其解集》教案设计
提出问题
多媒体演示:
①两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?
②一辆匀速行驶的汽车在11:20时距离A地50千米.要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?
探究新知
(一)不等式、一元一次不等式的概念
①在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式.
②下列式子中哪些是不等式?
(1)a+b=b+a (2)-3>-5 (3)x≠1
(4)x+3>6 (5)2m<n(6)2x-3
上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.
③小组交流:说说生活中的不等关系.
分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.
(二)不等式的解、不等式的解集
问题1.要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?
问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?
问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式>50的解呢?
问题4.判断下列数中哪些是不等式>50的解:
76,73,79,80,74.9,75.1,90,60
你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?
师生讨论后得出:当x>75时,不等式>50成立;当x<75或x=75时,不等式>50不成立.这就是说,任何一个大于75的数都是不等式>50的解,这样的解有无数个.因此,x>75表示了能使不等式>50成立的“x”的取值范围,我们把它叫做不等式x>50的解的集合,简称解集.这个解集还可以用数轴来表示(教师示范表示方法).回到前面的问题,要使汽车在12:00以前驶过A地,车速必须大于每小时75千米?