- 相关推荐
五年级数学《公倍数和公因数》教材分析
在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。
第22~25页教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。
第26~31页教学公因数。包括两个数的公因数、最大公因数的意义,求最大公因数的方法。在练习五里还安排了最小公倍数与最大公因数的比较。
第32~36页实践与综合应用。利用邮政编码、身份证号码等实例,教学用数字编码表示信息。
在“你知道吗”里,介绍了我国古代曾经用“辗转相除法”求最大公因数,也介绍了现代人们经常用“短除法”求两个数的最大公因数和最小公倍数。在阅读这篇材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。
1.在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。
例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。
例1先用长3厘米、宽2厘米的长方形纸片,分别铺边长6厘米和8厘米的正方形,发现正好铺满边长6厘米的正方形,不能正好铺满边长8厘米的正方形,并从长方形纸片的长、宽和正方形边长的关系,对铺满和不能铺满的原因作出解释。再想像这张长方形纸片还能正好铺满哪些正方形,从倍数的角度总结规律,为形成新的数学概念积累丰富的感性材料。然后揭示公倍数与最小公倍数的含义,把感性认识提升成理性认识。
教材选择长方形纸片铺正方形的活动教学公倍数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同一张长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。
分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系 铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。先找到这些正方形,把它们的边长从小到大排列,知道这样的正方形有无数多个。再用“既是2的倍数,又是3的倍数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
让学生在现实情境中,通过活动领悟公倍数的含义,不仅体现在例题的教学中,还落实到练习里。第23页“练一练”在2的倍数上画“.”,在5的倍数上画“○”。从数表里的10、20、30三个数既画了“.”又画了“○”,体会它们既是2的倍数,又是5的倍数,是2和5的公倍数。练习四第4、7、8题都是与公倍数有关的实际问题,让学生通过涂颜色、填表格、圈日期等活动体会公倍数的含义。
例3教学公因数、最大公因数的含义,也通过“铺”的活动组织教学。与例1不同的是,例3用2张边长不同的正方形纸片分别去铺同一个长方形,是形成公因数概念的需要。例题编写和练习编排与教学公倍数相似,这里不再重复。
2.突出概念的内涵、外延,让学生准确理解概念。
概念的内涵是指这个概念所反映的一切对象的共同的本质属性。公倍数是几个数公有的倍数,公因数是几个数公有的因数,可见“几个数公有的”是公倍数和公因数这两个概念的本质属性。在倍数、因数的基础上教学公倍数、公因数,关键在于突出“公有”的含义。
教材用“既是……又是……”的描述,让学生理解“公有”的意思。例1先联系长3厘米、宽2厘米的长方形纸片正好铺满边长6厘米、12厘米、24厘米……的正方形这些现象,从正方形的边长分别除以长方形纸的长和宽都没有余数,得出正方形的边长“既是2的倍数,又是3的倍数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后在“6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数”这句话里把“既是……又是……”进一步概括为“公倍数”,形成公倍数的概念。
集合图能直观形象地显示公倍数、公因数的含义。第23页把6的倍数与9的倍数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是6的倍数,也是9的倍数,是6和9的公倍数。先观察这个集合图,再填写第24页的集合图,学生能进一步体会公倍数的含义。
概念的外延是指这个概念包括的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,加强对概念的认识。例1在揭示2和3的公倍数的概念,指出它们的公倍数是6、12、18、24……后,提出“8是2和3的公倍数吗”这个问题,利用反例凸现公倍数的含义。让学生明白8只是2的倍数,不是3的倍数,从而进一步明确公倍数的概念。练习四第4题先在表格里分别写出4、5、6的倍数,再寻找4和5、5和6、4和6的公倍数,也有助于学生识别概念的外延。
3.运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法。
本单元只教学两个数的公倍数、最小公倍数和两个数的公因数、最大公因数。因为这些是最基础的数学知识,在约分和通分时应用最多。只要这些基础知识扎实,即使遇到三个分数的通分,学生也能灵活处理。不编排例题教学短除法求最小公倍数和最大公因数,而是采用写出两个数的倍数或因数,找出它们的最小公倍数或最大公因数的方法。这样安排的目的是,在运用概念解决问题的过程中,进一步加强数学概念的教学。
例2教学求两个数的最小公倍数,出现了多种解决问题的方法,这些方法的思路都出自公倍数和最小公倍数的概念,从6和9的公倍数、最小公倍数的意义引发出来。学生可能先分别写出6和9的倍数,再找出它们的公倍数和最小公倍数。由于倍数需一个一个地写,还要逐个逐个地比,所以得出公倍数和最小公倍数比较慢。学生也可能在9的倍数里找6的倍数,只要依次想出9的倍数(即9×1、9×2、9×3……的积),逐一判断是不是6的倍数,操作比较方便。尤其求两个较小数(不超过10)的最小公倍数时,更能显出这种方法的优点。当然,在6的倍数里找9的倍数,也是一种方法,但没有9的倍数里找6的倍数快捷。教材安排学生在交流中体会各种方法,首先是理解各种方法的共同点,都在寻找既是6的倍数、又是9的倍数,而且是尽量小的那个数。然后是理解各种方法的个性特点,从中作出自己的选择。
例4求两个数的最大公因数,教学方法和例2相似。求8和12的最大公因数的几种方法中,教材呈现的第一种方法比较适宜多数学生。因为一个数的因数的个数是有限的,先写出两个数的全部因数,再找出最大公因数,操作不麻烦。第二种方法从小到大依次想较小数的因数,稍不留心就会遗漏某一个因数。练习五编排第3题的意图就在于此。
练习四第5题在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数与因数关系,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。练习五第6题是初步会求两个数的最大公因数后安排的。左边色块里,每组的两个数之间也有倍数与因数的关系,它们的最大公因数是较小的那个数。右边色块里,每组两个数的最大公因数是1。这些特殊情况,在通分和约分时会经常出现。教学时可以按色块进行,先分别求出同一色块四组数的最小公倍数或最大公因数,再找出相同的特点,通过交流内化成求最小公倍数和最大公因数的技能。要注意的是,学生有倍数与因数的知识,能够理解同组两个数之间的倍数、因数关系,以及它们的最小公倍数和最大公因数的规律。由于新教材不讲互质数,也不教短除法,所以两个互质数的最小公倍数是它们的乘积、最大公因数是1,这些特殊情况,只能在具体对象中感受,不宜深入研究原因,更不要出结语让学生记忆。第9题分别写出1、2、3、4……20这些数与3、2、4、5的最大公因数,在发现有趣规律的同时,也在感受两个数的最大公因数的两种特殊情况。
【五年级数学《公倍数和公因数》教材分析】相关文章:
数学教材分析心得11-14
《狐狸和乌鸦》教材分析06-27
河流和湖泊的教材分析07-04
说教材分析和处理07-02
《将相和》教材分析09-20
高中教材数学教育分析07-02
初中数学教材分析总结12-14
《爷爷和小树》教材分析范文06-30
《爷爷和小树》教材理解分析06-30