- 相关推荐
下册数学直线和圆的方程知识点总结
数学在科学发展和现代生活生产中的应用非常广泛,以下是数学网为大家整理的高一下册数学直线和圆的方程知识点,希望可以解决您所遇到的相关问题,加油,数学网一直陪伴您。
一、直线方程
1. 直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是[0,180)
注:
①当倾斜角等于90时,直线l垂直于x轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
二、圆的方程
1. ⑴曲线与方程:在直角坐标系中,如果某曲线C上的 与一个二元方程f(x,y)=0的实数建立了如下关系:
①曲线上的点的坐标都是这个方程的解.
②以这个方程的解为坐标的点都是曲线上的点.
那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).
⑵曲线和方程的关系,实质上是曲线上任一点M(x,y)其坐标与方程f(x,y)=0的一种关系,曲线上任一点(x,y)是方程f(x,y)=0的解;反过来,满足方程f(x,y)=0的解所对应的点是曲线上的点.
注:如果曲线C的方程是f(x ,y)=0,那么点P0(x0 ,y)线C上的充要条件是f(x0 ,y0)=01.提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.
2.证明基本步骤:假设原命题的结论不成立 从假设出发,经推理论证得到矛盾 矛盾的原因是假设不成立,从而原命题的结论成立
3.应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).
4.方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.
【下册数学直线和圆的方程知识点总结】相关文章:
数学直线与圆的知识点总结06-27
初三知识点数学直线总结07-02
分式方程和无理方程知识点总结07-02
初中数学圆知识点总结08-07
初中数学《圆》知识点总结06-28
小升初数学:圆的知识点总结06-28
关于初中数学圆与圆的位置知识点总结06-27
初中知识:数学直线和直线关系公式06-26
初中数学备考《圆》知识点总结06-27
《圆》数学知识点归纳总结06-06