- 相关推荐
高三复习知识点总结
上学期间,大家都背过各种知识点吧?知识点在教育实践中,是指对某一个知识的泛称。那么,都有哪些知识点呢?以下是小编收集整理的高三复习知识点总结,仅供参考,大家一起来看看吧。
篇一:高三化学知识点:化学史知识
1.燃烧规律:
凡是除了F,Cl,Br,I,O,N这六种活泼非金属元素的单质及其负价元素的化合物(NH3除外)不能燃烧外,其他非惰性的非金属元素的单质及其化合物都能燃烧,且燃烧的火焰颜色与对应单质燃烧的火焰颜色相同或者相似。
2.气味规律:
a、凡是可溶于水或者可跟水反应的气体都具有刺激性难闻气味;如卤化氢
b、凡是有很强的还原性而又溶于水或者能跟水起反应的气体都具有特别难闻的刺激性气味。如H2S
3.等效平衡的两个推论:
a、定温和定容时,在容积不同的容器进行的同一个可逆反应,若满足初始时两容器加入的物质的数量之比等于容器的体积比,则建立的平衡等效。
b、在定温、定容且容积相同的两个容器内进行的同一个可逆的反应,若满足初始时两容器加入的物质的数量成一定的倍数,则数量多的容器内的平衡状态相当于对数量少的容器加压!
4.离子化合物在常态下都呈固态。
5.一般正5价以上的共价化合物(非水化物)在常态下是固态!如:P2O5,SO3
篇二:高考物理:直线运动
摘要:为大家整理了高考物理,希望可以帮助大家巩固知识,也希望和大家一起学习,一起进步,大家加油。
1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式。为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动。
2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型。仅凭物体的大小不能做视为质点的依据。
3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量。路程是物体运动轨迹的长度,是标量。
路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程。
4.速度和速率
(1)速度:描述物体运动快慢的物理量是矢量。
①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述。
②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧。瞬时速度是对变速运动的精确描述。
(2)速率:①速率只有大小,没有方向,是标量。
②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率。在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等。
5.加速度
(1)加速度是描述速度变化快慢的物理量,它是矢量。加速度又叫速度变化率。
(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示。
(3)方向:与速度变化Δv的方向一致。但不一定与v的方向一致。
[注意]加速度与速度无关。只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大。
6.匀速直线运动
(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动。
(2)特点:a=0,v=恒量。(3)位移公式:S=vt。
7.匀变速直线运动
(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动。
以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值。
8.重要结论
(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即
ΔS=Sn+l-Sn=aT2=恒量
(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:
9.自由落体运动
(1)条件:初速度为零,只受重力作用。(2)性质:是一种初速为零的匀加速直线运动,a=g。
(3)公式:
10.运动图像
(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;
②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;
③图像与横轴交叉,表示物体从参考点的一边运动到另一边。
(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;
②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值。
③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率。
④图线与横轴交叉,表示物体运动的速度反向。
⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。
总结:高三是重要时期,希望大家好好学习,也希望小编为大家整理的高考物理对大家有帮助,大家加油。
浏览了本文的读者也浏览了:
篇三:高三政治第一轮复习方法与技巧
一、基本指导思想:要以课本为主。
有些考生认为:“课本没什么看的!太简单了!”这种想法是绝对不可取的。“万变不离其宗”,千变万化的试题只是命题角度的变化,高考试题也同样如此,它不会脱离《考试大纲》,不会脱离课本的知识点。也即8020复习法则:80% 的分数在20% 的主干知识里20% 的分数在80% 的一般知识中。所以在第一轮复习中,我们要把主要精力放在课本上。
二、要注意复习课本的方法和技巧。
复习课本不是像刚学习的时候那样的细致,但也不是简单的翻一遍,或是单纯的背诵一遍,必须要注意方法和技巧。要过好课本,必须分三步走,第一步:认真将课本看上一遍,尽量一字不漏,确保没有落下东西;第二步:选择重点进行背诵,那么就有一个问题,什么才是重点,什么才是值得背的东西?我认为凡是可以作为道理、原理的内容都是重点,因为这一部分内容在做主观题时须一字不差的写上。具体来说,经济常识主要是:是什么、为什么、怎样做;哲学常识主要是原理即世界观和方法论;政治常识主要把握几个主体,这一步也是过课本时最关键的一步;第三步:合上课本能够准确说出这一课的主要内容,能够写出知识体系。
这三步实际上包含了厚和薄的关系:一是先把课本读“厚”。具体做法是:结合《考试大纲和考试说明》,把每一课的知识点都找出来,逐个消化。需要知识的识记,需要理解运用的知识点,要再通读一下课本上的相关内容,特别是以自己不一理解的重点问题,除了要问老师和同学之外,还要做少量相关的习题。这一遍复习不能留下任何的知识死角。要下苦功夫细致地复习,时间不够要抽时间,把识记、看课本和做题有效地结合起来。另外,每复习一个阶段要做一套检测题,检查一下自己知识点上还有没有漏洞,以便及时查漏补缺。建议以每课为一个阶段,课后做一套试题,自我检测一下。二是再把课本读“薄”。根据记忆规律,我们过一段时间还要重复复习一个前面我们复习进的内容,但时间有限,我们必须找出可行的方法!我的建议是:每进行完一个阶段(也就是两课),就要及时地总结一下,用一个专门的本子,列出每课的知识框架结构,并找出里面重点的知识和自己认为比较难的知识点,以备日后快速有效的复习。同时要做一个习题集,记录下那些自己做错的且比较重要的试题,每次考试前都要抽时间翻一下。
三、处理好课内和课外的关系。
如果考生的政治基础比较好,那么只要做好上面的两步,并跟上老师的复习进度,就基本可以了。但是如果考生的基础知识不扎实,那就要投入比较多的时间来做好第一步,除了课内要跟上老师的复习进度,还要安排好课外时间。比如,要抽出时间记忆知识点和知识框架结构;要抽出时间做一定量的习题;要抽出时间理解和消化课本的重点和难点内容。在这个时间的安排上,我认为:前一类学生的课外时间投入最好是每天30分钟左右,而后一类学生的课外时间投入最少要60分钟,用20分钟时间记忆,20分钟理解,20分钟做题,等到基础知识牢固了,可以适当地减少课外的时间的投入。那种靠考前突击记忆的做法是十分有害的,历次实践证明:如果平时没有时间,那么考前更没有时间,也没有好的心态去记忆,政治虽是文科,但同时要把功夫放在平时。
四、注意时事政治的积累。
政治科考试的最大特点是和当年的时政结合紧密。因此“两耳不闻天下事,一心只背政治书”的做法无疑也是错误的。所以,我们要在平时注意积累时政。步骤有两个:
第一,在平时注意把当月的重点时政记录下来,并作一归类。可以分为政治类、经济类、文化类、科技类、体育类等,特别要注意各个领域内的重大时政。
第二,在积累时政的过程中,把其与课本的复习相结合,学会自己命题。这一步要求考生多角度、多方面去分析时政,用所学的知识自己跟自己提问,同时要注意平时考试中知识点和时政的结合角度。
五、时间安排。
我们第一轮的复习时间8月至09年2月,平均一本书用4—5周时间。希望同学们能合理安排自己的课外时间。政治常识相对于高三应届而言比较陌生,所以用的时间可能要多些。学生要结合自己的实际情况,如果哪一部分相对薄弱,就要投入的时间长一些。可以在跟随老师同步复习的同时加大自己弱势部分的复习。找出每天中自己记忆力比较好的时间段记一些比较难记的东西,找出自己理解力比较强的时间段做一些自己认为比较难的部分的试题。但是要注意量,不可能花所有的课外时间去学习政治,毕竟还有其他功课,所以要合理安排好每一天的时间。比如今天有政治课,那么今天的课外时间就适当少分一点时间给政治,只需把课堂上老师讲的消化一下就可以了;如果今天没有政治课,那就多分一些时间给政治,自己合理安排时间,可以预习下一节要讲的内容,也可以单独找一些试题做一下以巩固自己学过的知识。
六、心态调整。
作为高三应届生要注意克服自己浮躁的毛病,要有“甘当小学生”的心态去认真做好第一轮的复习,不可太毛躁,切忌好高骛远和粗枝大叶,特别是不能眼高手低!该重新记的要记一下,该做的大题要做一下,不能只看看。组织答案也是一种能力,需要在平时培养,不能光用眼而不用手。
作为高三复读生要注意课本的复习,只不过要首先总结一下,自己考试失误的原因是什么,做到对症下药,在平时就要做到有重点的训练。在第一轮复习中,考生要平静自己,一步一步地走,稳扎稳打,只有保持一份好的心态做好第一轮复习,才能在以后的复习中做游余,轻松制胜。
总之,高三的学生要看清自己的优质和劣势,调整思路和心态,配合本样的复习进度,合理而科学地安排自己的课外时间,扎扎实实地做好第一复习。复习的方法很多,但是考生一定要结合实际制定出适合自己的复习计划,才能真正取得实效,在2009年的高考中获取得最大的成功。
总结:以上就是“高三政治第一轮复习方法与技巧”的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩!
一、质点的运动
(1)直线运动
1)匀变速直线运动
1、速度Vt=Vo+at
2、位移s=Vot+at/2=V平t= Vt/2t
3、有用推论Vt—Vo=2as
4、平均速度V平=s/t(定义式)
5、中间时刻速度Vt/2=V平=(Vt+Vo)/2
6、中间位置速度Vs/2=√[(Vo+Vt)/2]
7、加速度a=(Vt—Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8、实验用推论Δs=aT{Δs为连续相邻相等时间(T)内位移之差}
9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt—Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点。位移和路程。参考系。时间与时刻;速度与速率。瞬时速度。
2)自由落体运动
初速度Vo=0 2。末速度Vt=gt 3。下落高度h=gt2/2(从Vo位置向下计算)4。推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9。8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1、位移s=Vot—gt2/2
2、末速度Vt=Vo—gt(g=9。8m/s2≈10m/s2)
3、有用推论Vt2—Vo2=—2gs
4、上升最大高度Hm=Vo2/2g(抛出点算起)
5、往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、力(常见的力、力的合成与分解)
1)常见的力
1、重力G=mg(方向竖直向下,g=9。8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2、胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3、滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4、静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5、万有引力F=Gm1m2/r2(G=6。67×10—11N?m2/kg2,方向在它们的连线上)
6、静电力F=kQ1Q2/r2(k=9。0×109N?m2/C2,方向在它们的连线上)
7、电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8、安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9、洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向);
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1、同一直线上力的合成同向:F=F1+F2,反向:F=F1—F2(F1>F2)
2、互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3、合力大小范围:|F1—F2|≤F≤|F1+F2|
4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
3)动力学(运动和力)
1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3、牛顿第三运动定律:F=—F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4、共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5、超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
三、曲线运动、万有引力
1)平抛运动
1、水平方向速度:Vx=Vo
2、竖直方向速度:Vy=gt
3、水平方向位移:x=Vot
4、竖直方向位移:y=gt2/2
5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8、水平方向加速度:ax=0;竖直方向加速度:ay=g
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;
(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1、线速度V=s/t=2πr/T
2、角速度ω=Φ/t=2π/T=2πf
3、向心加速度a=V2/r=ω2r=(2π/T)2r
4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5、周期与频率:T=1/f
6、角速度与线速度的关系:V=ωr
7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8、主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2、万有引力定律:F=Gm1m2/r2(G=6。67×10—11N?m2/kg2,方向在它们的连线上)
3、天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7。9km/s;V2=11。2km/s;V3=16。7km/s
6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7。9km/s。
四、功和能(功是能量转化的量度)
1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2、重力做功:Wab=mghab {m:物体的质量,g=9。8m/s2≈10m/s2,hab:a与b高度差(hab=ha—hb)}
3、电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4、电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}
5、功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6、汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}
7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8、电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}
9、焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11、动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12、重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14、动能定理(对物体做正功,物体的动能增加):W合=mvt2/2—mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2—mvo2/2)}
15、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=—ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);
(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:1kWh(度)=3。6×106J,1eV=1。60×10—19J;
(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
五、电场
1、两种电荷、电荷守恒定律、元电荷:(e=1。60×10—19C);带电体电荷量等于元电荷的整数倍
2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9。0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4、真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5、匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6、电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7、电势与电势差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q
8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10、电势能的变化ΔEAB=EB—EA{带电体在电场中从A位置到B位置时电势能的差值}
11、电场力做功与电势能变化ΔEAB=—WAB=—qUAB(电势能的增量等于电场力做功的负值)
12、电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器
14、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
3)常见电场的电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1。60×10—19J;
(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。
六、恒定电流
1、电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2、欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3、电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4、闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5、电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6、焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7、纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8、电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9、电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3 I并=I1+I2+I3+
电压关系U总=U1+U2+U3+ U总=U1=U2=U3
功率分配P总=P1+P2+P3+ P总=P1+P2+P3+
10、欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11、伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12、滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp>Rx便于调节电压的选择条件Rp<Rx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
七、磁场
1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2、安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3、洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);
解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握;
(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料
八、电磁感应
1、[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;
(2)自感电流总是阻碍引起自感电动势的电流的变化;
(3)单位换算:1H=103mH=106μH。
(4)其它相关内容:自感/日光灯。