因式分解的知识点总结

时间:2022-08-03 12:50:15 总结范文 我要投稿

因式分解的知识点总结

  在日常的学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是一些常考的内容,或者考试经常出题的地方。相信很多人都在为知识点发愁,下面是小编为大家整理的因式分解的知识点总结,欢迎大家分享。

因式分解的知识点总结

  因式分解的知识点总结 篇1

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的`因式,叫做这个多项式各项的公因式。

  公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  因式分解的知识点总结 篇2

  1.因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

  3.公因式的确定:系数的最大公约数?相同因式的最低次幂。

  注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+b)(a-b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2。

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

  (2)使用因式分解公式时要特别注意公式中的.字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式。

  6.因式分解的解题技巧:

  (1)换位整理,加括号或去括号整理;

  (2)提负号;

  (3)全变号;

  (4)换元;

  (5)配方;

  (6)把相同的式子看作整体;

  (7)灵活分组;

  (8)提取分数系数;

  (9)展开部分括号或全部括号;

  (10)拆项或补项。

  7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”

  因式分解的知识点总结 篇3

  用待定系数法分解因式

  余式定理及其应用

  余式定理

  f(x)除以(x-a)的余式是常数f(a)

  因式:如果一个次数不低于一次的多项式因式,除这个多项式本身和非零常数外,再也没有其他的因式,那么这个因式(即该多项式)就叫做质因式

  因式分解:把一个多项式写成几个质因式乘积形式的变形过程叫做多项式的因式分解

  1、提取公因式法

  2、运用公式法

  3、分组分解法

  4、十字相乘法

  5、配方法

  6、求根公式法

  公式(a的.立方=a^3;a的平方=a^2)

  公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

  平方差公式:a平方-b平方=(a+b)(a-b)

  完全平方和公式:(a+b)平方=a平方+2ab+b平方

  完全平方差公式:(a-b)平方=a平方-2ab+b平方

  两根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]两根式

  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

  因式分解的知识点总结 篇4

  (1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

  (2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式。

  (3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的。

  (4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

  (5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式。

  (6)如果多项式的第一项的系数是负的,一般要提出“—”号,使括号内的第一项的系数是正的,在提出“—”号时,多项式的各项都要变号。

  (7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式。

  (8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

  (9)平方差公式:两数平方差,等于这两数的.和乘以这两数的差,字母表达式:a2—b2=(a+b)(a—b)

  (10)具备什么特征的两项式能用平方差公式分解因式

  ①系数能平方,(指的系数是完全平方数)

  ②字母指数要成双,(指的指数是偶数)

  ③两项符号相反。(指的两项一正号一负号)

  (11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么。

  (12)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。字母表达式:a2±2ab+b2=(a±b)2

  (13)完全平方公式的特点:

  ①它是一个三项式。

  ②其中有两项是某两数的平方和。

  ③第三项是这两数积的正二倍或负二倍。

  ④具备以上三方面的特点以后,就等于这两数和(或者差)的平方。

  (14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和)。

  (15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式。

  (16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式。

  (17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提。

  (18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式。

  (19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键。

  因式分解的知识点总结 篇5

  一、分解因式

  1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

  2.因式分解与整式乘法是互逆关系.

  因式分解与整式乘法的区别和联系:

  (1)整式乘法是把几个整式相乘,化为一个多项式;

  (2)因式分解是把一个多项式化为几个因式相乘.

  二、提公共因式法

  1、如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

  2、概念内涵:

  (1)因式分解的最后结果应当是"积";

  (2)公因式可能是单项式,也可能是多项式;

  (3)提公因式法的理论依据是乘法对加法的分配律

  3、易错点点评:

  (1)注意项的符号与幂指数是否搞错;

  (2)公因式是否提"干净";

  (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

  三、运用公式法

  1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的.方法叫做运用公式法.

  2.主要公式:

  (1)平方差公式:

  (2)完全平方公式:

  ¤3.易错点点评:

  因式分解要分解到底.如就没有分解到底.

  4、运用公式法:

  (1)平方差公式:

  ①应是二项式或视作二项式的多项式;

  ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

  ③二项是异号.

  (2)完全平方公式:

  ①应是三项式;

  ②其中两项同号,且各为一整式的平方;

  ③还有一项可正负,且它是前两项幂的底数乘积的2倍.

  5、因式分解的思路与解题步骤:

  (1)先看各项有没有公因式,若有,则先提取公因式;

  (2)再看能否使用公式法;

  (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

  (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

  (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

  四、分组分解法:

  1、分组分解法:利用分组来分解因式的方法叫做分组分解法.

  2、概念内涵:

  分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

  3、注意:分组时要注意符号的变化.

  五、十字相乘法:

  1、对于二次三项式,将a和c分别分解成两个因数的乘积,且满足,往往写成的形式,将二次三项式进行分解.

  2、二次三项式的分解:

  3、规律内涵:

  (1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

  (2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.

  4、易错点点评:

  (1)十字相乘法在对系数分解时易出错;

  (2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.

【因式分解的知识点总结】相关文章:

初中数学因式分解知识点07-15

七年级数学下册《因式分解》知识点总结08-01

物理知识点总结11-19

中考知识点总结11-22

浮力知识点总结12-28

语文知识点总结08-26

语文知识点总结04-27

英语知识点总结12-09

椭圆知识点总结12-10