《平行四边形的性质》评课稿

时间:2022-03-23 11:40:10 语文 我要投稿

《平行四边形的性质》评课稿

  所谓评课,顾名思义,即评价课堂教学。是在听课活动结束之后的教学延伸。对其执教教师的课堂教学的得失,成败进行评议的一种活动,是加强教学常规管理,开展教育科研活,深化课堂教学改革,促进学生发展,推进教师专业水平提高的重要手段。以下是小编整理的《平行四边形的性质》评课稿,以供参考。

  评课稿

  徐老师执教的《平行四边形的性质》这节课中,我觉得这是一堂充满生命活动力的课堂,也是促进学生全面发展的课堂,体现新课标理念的课堂。我认为本节课的启示有以下几点:

  一、教学思路清晰,重难点突出。

  徐华美老师根据教学内容,因材施教地制定了教学思路。这节课以“创设情境———发现规律——指导探究——实践应用”为线索,整个教学思路清晰。

  这节课徐华美老师突出培养学生动手操作、主动探究的训练,通过拼图活动来加深对平行四边形的性质的理解,突出重难点的内容,整个教学做到详略得当,重、难点把握准确。这样的设计,符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力。

  二、重视操作探究,发挥主体作用。

  由新课开始,徐华美老师用电脑出示三个图形,一个是长方形,一个平行四边形,一个是窗户,让学生判断是几边形,是什么样的四边形,让学生拿两个全等三角形形拼图,看能拼出什么样的图形,从而证实学生的猜想。并组织学生讨论:平行四边形和转化后的长方形有的关系,整个操作过程层次分明,通过剪、拼,让学生动手、动脑、动口。人人参与学习过程,不是为操作而操作,而是把操作、理解概念有机地结合起来。通过操作,让学生既学得高兴又充分理解知识,形象直观地推导了平行四边形的性质,培养学生获取知识的能力、观察能力和操作能力。

  三、教师的主导作用:

  这节课也让我们感受到徐华美老师鲜明的教学风格,每一道题呈现出来之后都让学生经历观察、思考、交流、探讨的过程,最后教师点评,较好的发挥了教师的主导作用。具体体现在以下三个方面: (1)点拨到位:例如第一题在学生分析的过程中,徐华美老师耐心倾听,对学生找出的结论,没有逐个点评。在学生都发表完意见之后,徐华美老师再进行小结。⑵引导的恰如其分:通过课件的演示让学生观察边角的关系,她首先引导学生在演示的过程中找出对应边角,为学生顺利解决问题指明了方向。⑶评价恰当:针对学生年龄特点、及内初班学生情况。徐老师及时简单中肯的评价,给予了学生莫大的鼓励。

  四、学生良好的学习习惯养成:

  这个班的学生基础较好,他们活泼可爱、积极向上。由于徐华美老师的问题设计非常合理,极大地调动了学生学习的积极性。

  ⑴氛围:学生发言积极,思维活跃。课堂上探究学习的氛围非常浓厚。

  ⑵师生关系:徐老师的性格开朗、豁达的个性深深感染着学生,师生关系融洽,非常民主、平等、和谐。

  ⑶训练有素:学生敢于表达自己的见解,可以看出学生平时训练非常有素。

  五、教学效果好:

  从整体上看,本节课较好的完成了教学目标,教学设计体现了数学教学的新理念。教学实施的手段领先,能充分利用课件演示图形的变化,活跃学生的思维,具有很强的直观性,切实达到了教师、学生、媒体的整合。学生的思维得到有效地训练,通过问题的解决,进一步培养了数学学习的能力。是值得我们学习的一节好课。

  拓展:《平行四边形的性质》教案

  教学目标:

  1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2.索并掌握平行四边形的性质,并能简单应用;

  3.在探索活动过程中发展学生的探究意识。

  教学重点:平行四边形性质的探索。

  教学难点:平行四边形性质的理解。

  教学准备:多媒体课件

  教学过程

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1.小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

  2.小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理来证明这个结论,如图连结AC。

  ∵四边形ABCD是平行四边形

  ∴AD//BC,AB//CD

  ∴∠1=∠2,∠3=∠4

  ∴△ABC和△CDA中

  ∠2=∠1

  AC=CA

  ∠3=∠4

  ∴△ABC≌△CDA(ASA)

  ∴AB=DC,AD=CB,∠D=∠B

  又∵∠1=∠2

  ∠3=∠4

  ∴∠1+∠3=∠2+∠4

  即∠BAD=∠DCB

  第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1.活动内容:

  (1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1如图:四边形ABCD是平行四边形。

  (1)求∠ADC、∠BCD度数

  (2)边AB、BC的度数、长度。

  练2四边形ABCD是平行四边形

  (1)它的四条边中哪些线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。

  2.ABCD中,∠A比∠B大20°,则∠C=。

  3.ABCD中,AB=3,BC=5,则AD=CD=。

  4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。

  布置作业

  课本习题4.1

  A组(学优生)1、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

【《平行四边形的性质》评课稿】相关文章:

《小数性质》评课稿07-23

小数的性质评课稿11-04

小数的性质评课稿03-20

《比的基本性质》评课稿10-04

《比的基本性质》评课稿03-15

《小数性质》评课稿4篇03-26

《小数性质》评课稿(4篇)03-26

《分数的基本性质》评课稿04-06

分数的基本性质评课稿04-06