数据结构实验报告

时间:2022-07-02 12:54:01 报告范文 我要投稿

数据结构实验报告

数据结构实验报告1

  一.实验内容:

数据结构实验报告

  实现哈夫曼编码的生成算法。

  二.实验目的:

  1、使学生熟练掌握哈夫曼树的生成算法。

  2、熟练掌握哈夫曼编码的方法。

  三.问题描述:

  已知n个字符在原文中出现的频率,求它们的哈夫曼编码。

  1、读入n个字符,以及字符的权值,试建立一棵Huffman树。

  2、根据生成的Huffman树,求每个字符的Huffman编码。并对给定的待编码字符序列进行编码,并输出。

  四.问题的实现

  (1)郝夫曼树的存储表示

  typedef struct{

  unsigned int weight;

  unsigned int parent,lchild,rchild;

  }HTNode,*HuffmanTree; //动态分配数组存储郝夫曼树

  郝夫曼编码的存储表示

  typedef char* *HuffmanCode;//动态分配数组存储郝夫曼编码

  (2)主要的实现思路:

  a.首先定义郝夫曼树的存储形式,这里使用了数组

  b.用select遍历n个字符,找出权值最小的两个

  c.构造郝夫曼树HT,并求出n个字符的郝夫曼编码HC

  总结

  1.基本上没有什么太大的问题,在调用select这个函数时,想把权值最小的两个结点的序号带回HuffmanCoding,所以把那2个序号设置成了引用。

  2.在编程过程中,在什么时候分配内存,什么时候初始化花的时间比较长

  3.最后基本上实现后,发现结果仍然存在问题,经过分步调试,发现了特别低级的.输入错误。把HT[i].weight=HT[s1].weight+HT[s2].weight;中的s2写成了i

  附:

  //动态分配数组存储郝夫曼树

  typedef struct{

  int weight; //字符的权值

  int parent,lchild,rchild;

  }HTNode,*HuffmanTree;

  //动态分配数组存储郝夫曼编码

  typedef char* *HuffmanCode;

  //选择n个(这里是k=n)节点中权值最小的两个结点

  void Select(HuffmanTree &HT,int k,int &s1,int &s2)

  { int i;

  i=1;

  while(i<=k && HT[i].parent!=0)i++;

  //下面选出权值最小的结点,用s1指向其序号

  s1=i;

  for(i=1;i<=k;i++)

  {

  if(HT[i].parent==0&&HT[i].weight

  }

  //下面选出权值次小的结点,用s2指向其序号

  for(i=1;i<=k;i++)

  {

  if(HT[i].parent==0&&i!=s1)break;

  }

  s2=i;

  for(i=1;i<=k;i++)

  {

  if(HT[i].parent==0&&i!=s1&&HT[i].weight

  }

  }

  //构造Huffman树,求出n个字符的编码

  void HuffmanCoding(HuffmanTree &HT,HuffmanCode &HC,int *w,int n)

  {

  int m,c,f,s1,s2,i,start;

  char *cd;

  if(n<=1)return;

  m=2*n-1; //n个叶子n-1个结点

  HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); //0号单元未用,预分配m+1个单元

  HuffmanTree p=HT+1;

  w++; //w的号单元也没有值,所以从号单元开始

  for(i=1;i<=n;i++,p++,w++)

  {

  p->weight=*w;

  p->parent=p->rchild=p->lchild=0;

  }

  for(;i<=m;++i,++p)

  {

  p->weight=p->parent=p->rchild=p->lchild=0;

  }

  for(i=n+1;i<=m;i++)

  {

  Select(HT,i-1,s1,s2); //选出当前权值最小的

  HT[s1].parent=i;

  HT[s2].parent=i;

  HT[i].lchild=s1;

  HT[i].rchild=s2;

  HT[i].weight=HT[s1].weight+HT[s2].weight;

  }

  //从叶子到根逆向求每个字符的郝夫曼编码

  HC=(HuffmanCode)malloc((n+1)*sizeof(char*)); //分配n个字符编码的头指针变量

  cd=(char*)malloc(n*sizeof(char)); //分配求编码的工作空间

  cd[n-1]='';//编码结束符

  for(i=1;i<=n;i++) //逐个字符求郝夫曼编码

  {

  start=n-1; //编码结束符位置

  for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent) //从叶子到根逆向求编码

  {

  if(HT[f].lchild==c)cd[--start]='0';

  else

  cd[--start]='1';

  }

  HC[i]=(char*)malloc((n-start)*sizeof(char)); //为第i个字符编码分配空间

  strcpy(HC[i],&cd[start]);//从cd复制编码到HC

  }

  free(cd); //释放工作空间

  }

  void main

  { int n,i;

  int* w; //记录权值

  char* ch; //记录字符

  HuffmanTree HT;

  HuffmanCode HC;

  cout<<"请输入待编码的字符个数n=";

  cin>>n;

  w=(int*)malloc((n+1)*sizeof(int)); //记录权值,号单元未用

  ch=(char*)malloc((n+1)*sizeof(char));//记录字符,号单元未用

  cout<<"依次输入待编码的字符data及其权值weight"<

  for(i=1;i<=n;i++)

  {

  cout<<"data["<

  }

数据结构实验报告2

  一、实验目的及要求

  1)掌握栈和队列这两种特殊的'线性表,熟悉它们的特性,在实际问题背景下灵活运用它们。

  本实验训练的要点是“栈”和“队列”的观点;

  二、实验内容

  1) 利用栈,实现数制转换。

  2) 利用栈,实现任一个表达式中的语法检查(选做)。

  3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列);

  三、实验流程、操作步骤或核心代码、算法片段

  顺序栈:

  Status InitStack(SqStack &S)

  {

  S.base=(ElemType*)malloc(STACK_INIT_SIZE*sizeof(ElemType));

  if(!S.base)

  return ERROR;

  S.top=S.base;

  S.stacksize=STACK_INIT_SIZE;

  return OK;

  }

  Status DestoryStack(SqStack &S)

  {

  free(S.base);

  return OK;

  }

  Status ClearStack(SqStack &S)

  {

  S.top=S.base;

  return OK;

  }

  Status StackEmpty(SqStack S)

  {

  if(S.base==S.top)

  return OK;

  return ERROR;

  }

  int StackLength(SqStack S)

  {

  return S.top-S.base;

  }

  Status GetTop(SqStack S,ElemType &e)

  {

  if(S.top-S.base>=S.stacksize)

  {

  S.base=(ElemType *)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemType));

  if(!S.base) return ERROR;

  S.top=S.base+S.stacksize;

  S.stacksize+=STACKINCREMENT;

  }

  *S.top++=e;

  return OK;

  }

  Status Push(SqStack &S,ElemType e)

  {

  if(S.top-S.base>=S.stacksize)

  {

  S.base=(ElemType *)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemType));

  if(!S.base)

  return ERROR;

  S.top=S.base+S.stacksize;

  S.stacksize+=STACKINCREMENT;

  }

  *S.top++=e;

  return OK;

  }

  Status Pop(SqStack &S,ElemType &e)

  {

  if(S.top==S.base)

  return ERROR;

  e=*--S.top;

  return OK;

  }

  Status StackTraverse(SqStack S)

  {

  ElemType *p;

  p=(ElemType *)malloc(sizeof(ElemType));

  if(!p) return ERROR;

  p=S.top;

  while(p!=S.base)//S.top上面一个...

  {

  p--;

  printf("%d ",*p);

  }

  return OK;

  }

  Status Compare(SqStack &S)

  {

  int flag,TURE=OK,FALSE=ERROR;

  ElemType e,x;

  InitStack(S);

  flag=OK;

  printf("请输入要进栈或出栈的元素:");

  while((x= getchar)!='#'&&flag)

  {

  switch (x)

  {

  case '(':

  case '[':

  case '{':

  if(Push(S,x)==OK)

  printf("括号匹配成功! ");

  break;

  case ')':

  if(Pop(S,e)==ERROR || e!='(')

  {

  printf("没有满足条件 ");

  flag=FALSE;

  }

  break;

  case ']':

  if ( Pop(S,e)==ERROR || e!='[')

  flag=FALSE;

  break;

  case '}':

  if ( Pop(S,e)==ERROR || e!='{')

  flag=FALSE;

  break;

  }

  }

  if (flag && x=='#' && StackEmpty(S))

  return OK;

  else

  return ERROR;

  }

  链队列:

  Status InitQueue(LinkQueue &Q)

  {

  Q.front =Q.rear=

  (QueuePtr)malloc(sizeof(QNode));

  if (!Q.front) return ERROR;

  Q.front->next = NULL;

  return OK;

  }

  Status DestoryQueue(LinkQueue &Q)

  {

  while(Q.front)

  {

  Q.rear=Q.front->next;

  free(Q.front);

  Q.front=Q.rear;

  }

  return OK;

  }

  Status QueueEmpty(LinkQueue &Q)

  {

  if(Q.front->next==NULL)

  return OK;

  return ERROR;

  }

  Status QueueLength(LinkQueue Q)

  {

  int i=0;

  QueuePtr p,q;

  p=Q.front;

  while(p->next)

  {

  i++;

  p=Q.front;

  q=p->next;

  p=q;

  }

  return i;

  }

  Status GetHead(LinkQueue Q,ElemType &e)

  {

  QueuePtr p;

  p=Q.front->next;

  if(!p)

  return ERROR;

  e=p->data;

  return e;

  }

  Status ClearQueue(LinkQueue &Q)

  {

  QueuePtr p;

  while(Q.front->next )

  {

  p=Q.front->next;

  free(Q.front);

  Q.front=p;

  }

  Q.front->next=NULL;

  Q.rear->next=NULL;

  return OK;

  }

  Status EnQueue(LinkQueue &Q,ElemType e)

  {

  QueuePtr p;

  p=(QueuePtr)malloc(sizeof (QNode));

  if(!p)

  return ERROR;

  p->data=e;

  p->next=NULL;

  Q.rear->next = p;

  Q.rear=p; //p->next 为空

  return OK;

  }

  Status DeQueue(LinkQueue &Q,ElemType &e)

  {

  QueuePtr p;

  if (Q.front == Q.rear)

  return ERROR;

  p = Q.front->next;

  e = p->data;

  Q.front->next = p->next;

  if (Q.rear == p)

  Q.rear = Q.front; //只有一个元素时(不存在指向尾指针)

  free (p);

  return OK;

  }

  Status QueueTraverse(LinkQueue Q)

  {

  QueuePtr p,q;

  if( QueueEmpty(Q)==OK)

  {

  printf("这是一个空队列! ");

  return ERROR;

  }

  p=Q.front->next;

  while(p)

  {

  q=p;

  printf("%d<- ",q->data);

  q=p->next;

  p=q;

  }

  return OK;

  }

  循环队列:

  Status InitQueue(SqQueue &Q)

  {

  Q.base=(QElemType*)malloc(MAXQSIZE*sizeof(QElemType));

  if(!Q.base)

  exit(OWERFLOW);

  Q.front=Q.rear=0;

  return OK;

  }

  Status EnQueue(SqQueue &Q,QElemType e)

  {

  if((Q.rear+1)%MAXQSIZE==Q.front)

  return ERROR;

  Q.base[Q.rear]=e;

  Q.rear=(Q.rear+1)%MAXQSIZE;

  return OK;

  }

  Status DeQueue(SqQueue &Q,QElemType &e)

  {

  if(Q.front==Q.rear)

  return ERROR;

  e=Q.base[Q.front];

  Q.front=(Q.front+1)%MAXQSIZE;

  return OK;

  }

  int QueueLength(SqQueue Q)

  {

  return(Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;

  }

  Status DestoryQueue(SqQueue &Q)

  {

  free(Q.base);

  return OK;

  }

  Status QueueEmpty(SqQueue Q) //判空

  {

  if(Q.front ==Q.rear)

  return OK;

  return ERROR;

  }

  Status QueueTraverse(SqQueue Q)

  {

  if(Q.front==Q.rear)

  printf("这是一个空队列!");

  while(Q.front%MAXQSIZE!=Q.rear)

  {

  printf("%d<- ",Q.base[Q.front]);

  Q.front++;

  }

  return OK;

  }

数据结构实验报告3

  《数据结构与算法》实验报告

  专业 班级 姓名 学号

  实验项目

  实验一 二叉树的应用

  实验目的

  1、进一步掌握指针变量的含义及应用。

  2、掌握二叉树的结构特征,以及各种存储结构的特点及使用范围。

  3、掌握用指针类型描述、访问和处理二叉树的运算。

  实验内容

  题目1:编写一个程序,采用一棵二叉树表示一个家谱关系。要求程序具有如下功能:

  (1)用括号表示法输出家谱二叉树,

  (2)查找某人的所有儿子,

  (3)查找某人的所有祖先。

  算法设计分析

  (一)数据结构的定义

  为了能够用二叉树表示配偶、子女、兄弟三种关系,特采用以下存储关系,则能在二叉树上实现家谱的各项运算。

  二叉树型存储结构定义为:

  typedef struct SNODE

  {char name[MAX]; //人名

  struct SNODE *left;//指向配偶结点

  struct SNODE *right; //指向兄弟或子女结点

  }FNODE;

  (二)总体设计

  实验由主函数、家谱建立函数、家谱输出函数、儿子查找函数、祖先查找函数、结点定位函数、选择界面函数七个函数共同组成。其功能描述如下:

  (1)主函数:统筹调用各个函数以实现相应功能

  void main()

  (2)家谱建立函数:与用户交互建立家族成员对应关系

  void InitialFamily(FNODE *&head) //家谱建立函数

  (3)家谱输出函数:用括号表示法输出家谱

  输出形式为:父和母(子1和子妻1(孙1),子2和子妻2(孙2))

  void PrintFamily(FNODE *head) //家谱输出函数

  (4)儿子查找函数:在家谱中查找到某人所有的子女并输出,同时也能辨别出其是否为家族成员与是否有子女

  void FindSon(FNODE *b,char p[]) //儿子查找函数

  (5)祖先查找函数:在家谱中查找到某人所有的祖先并输出,同时也能辨别出其是否为家族中成员。

  int FindAncestor(FNODE *head,char son[ ]) //祖先查找函数

  (6)结点定位函数:在家谱中找到用户输入人名所对应的结点。

  FNODE *findnode(FNODE *b,char p[]) //结点定位函数

  (7)选择界面函数:为便于编写程序,将用户选择部分独立为此函数。

  void PRINT(int &n)

  (三)各函数的详细设计:

  void InitialFamily(FNODE *&head) //家谱建立函数

  1:首先建立当前人的'信息,将其左右结点置为空,

  2:然后让用户确定其是否有配偶,如果没有配偶,则当前程序结束,

  3:如果有则建立其配偶信息,并将配偶结点赋给当前人的左结点;

  4:再让用户确定其是否有子女,如果有则递归调用家谱建立函数建立子女结点,并将其赋给配偶结点的下一个右结点。

  5:如无,则程序结束

  void PrintFamily(FNODE *head) //家谱输出函数

  1:首先判断当前结点是否为空,如果为空则结束程序;

  2:如果不为空,则输出当前结点信息,

  3:然后判断其左结点(配偶结点)是否为空,如不为空则输出“和配偶信息。

  4:再判断配偶结点的右结点是否为空,如不为空则递归调用输出其子女信息,最后输出“)”;

  5:当配偶结点为空时,则判断其右结点(兄弟结点)是否为空

  6:如果不为空,则输出“,”,并递归调用输出兄弟信息

  7程序结束

  FNODE *findnode(FNODE *b,char p[]) //结点定位函数

  1:当前结点是否为空,为空则返回空;

  2:如果和查找信息相同,则返回当前结点;

  3:如不然,则先后递归访问其左结点,再不是则递归访问右结点

  void FindSon(FNODE *b,char p[]) //儿子查找函数

  1:在家谱中定位到要查找的结点,如无则输出“查找不到此人”

  2:判断其配偶结点与子女结点是否为空,为空则输出“无子女”

  3:不为空则输出其配偶结点的所有右结点(子女结点)。

  int FindAncestor(FNODE *head,char son[ ]) //祖先查找函数

  1:先在家谱中定位到要查找的结点,如为空输出“不存在此人”,程序结束

  2:先将父母结点入栈,当栈为空时程序结束,

  3:栈不为空时,判断栈顶元素是否已访问过,

  4:访问过,再判断是否为查找结点,如是则输出栈中保存的其祖先结点,并滤过其兄弟结点不输出;不是查找结点,则退栈一个元素

  5:未访问过,则取当前栈顶元素,置访问标志——1,同时取其右结点

  6:栈不为空或当前所取结点不为空时,转到2;

  实验测试结果及结果分析

  (一)测试结果

  (二)结果分析

  (略)

  实验总结

  (略)

【数据结构实验报告】相关文章:

c数据结构实验报告07-01

数据结构实验报告 图07-01

数据结构实验报告总结07-01

北邮数据结构实验报告07-01

数据结构实验报告 实验五07-01

北邮数据结构实验报告 图07-01

北邮数据结构实验报告线性表07-01

实验报告芯片解剖实验报告07-03

实验报告10-13

关于实验报告01-27