- 相关推荐
《假分数化成整数或带分数》教学设计5篇
引导语:作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?下面是小编整理的《假分数化成整数或带分数》教学设计,仅供参考,希望能够帮助到大家。
《假分数化成整数或带分数》教学设计篇1
教学目标:
1、知道带分数是假分数,是整数与真分数合成的数。2、会把假分数化成整数或带分数。
3、使学生经历假分数化成整数或分数的探索过程,进一步发展数感。4、培养良好的学习习惯,树立学好数学的信心。
教学重点:会把假分数化成整数或带分数。
教学难点:理解假分数化成整数或带分数的转化思路。
教学过程:
一、谈话导入:
最近我们一直在与数学王国中的一位朋友打交道,它就是分数。我们已经知道分数可以分成真分数和假分数,老师说几个分数你们来判断一下它是哪种分数?
谁还能举几个假分数的例子?(根据学生的回答有意识的板书成两类,同时选择1、2个分数让学生说说意义及其组成。)
二、探索建构。
(一)探索假分数化成整数的方法。
1、师问:你能把这些假分数化成整数吗?试着把你的想法与同桌交流一下。
2、学生汇报方法。(法一:根据分数与除法的关系;法二:根据假分数的意义。)根据学生的回答师适当板书思考过程,如果学生对于第二种方法想不到,教师应适当提醒或作简单说明,以便于进一步加强对分数意义的理解。
3、引导比较:将这些假分数化成整数,可以从假分数的意义这个角度去推算,也可以根据分数于除法的关系直接用分子除以分母,你比较喜欢哪种方法?为什么?
4、口答:将16/8、21/7、42/6转化成整数。
5、观察思考:这些能化成整数的假分数有什么特点?
6、师:你能不能也出几个能化成整数的`假分数考考别人?
7、师问:谁能概括一下,刚才我们是怎样把这些假分数化成整数的?
(二)探索假分数化成带分数的方法。
1、师问:刚才举的假分数的例子中,还有这部分假分数能不能化成整数呢?为什么?那它们该化成怎样的数呢?(小黑板出示带分数的概念。)
2、师:这个概念看得懂吗?我们可以通过举例来说明。比如4/3可以写成1这个整数和1/3这个真分数合成的数,像这样的数就叫带分数,这个带分数读作一又三分之一。(师板书带分数的写法及读法,并组织学生齐读两遍。)
出示题目:读出下面带分数,并说说它的整数部分和分数部分。
621
3、师:4/3这个假分数和1这个带分数之间是什么关系呢?我们可以请数轴来帮忙解决。(出示数轴)请在数轴上找出4/3,1比1多还是少?又多出多少呢?(同样指名学生标出)这两个数我们在数轴上分别找到了它们的位置后,你有没有什么发现?
4、师小结:这两个数表示的是同一个点,说明它们的实质是一样的,只是表现形式不同罢了,可以这样说,带分数实际上只是分子不是分母倍数的假分数的另一种形式。
5、师问:你们想不想把其他的假分数也写成带分数的形式?就请动手试一试把11/4这个假分数化成带分数。(学生尝试着把一个假分数化成带分数。师巡视了解情况。)
6、交流方法。(共有三种方法。小黑板相机出示书上的两种解题思路,同时根据学生的回答适当进行板书。如果学生没有全部回答出三种思路,教师无需强求硬塞)
7、练习:让生继续试着把剩下来的假分数化成带分数。
8、师问:谁来概括一下,刚才是怎样把假分数转化成带分数的?
(归纳得出方法:分子除以分母,除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。)
9、概括总结:观察前、后两组转化假分数的方法,它们有什么共同的地方?(揭题:假分数转化成整数或带分数)
三、巩固练习。
1、练习九2。让生独立完成,集体交流:说说为什么用这个假分数表示。
2、练习九4。出示题目。问:这里把多长看作单位“1”?指导填5/3、1。其余让生独立完成,集体交流。
3、练习九5。
出示题目:1=()/11=()/21=()/31=()/4
2=()/12=()/22=()/32=()/4
3=()/13=()/23=()/33=()/4
第一组指导学生完成,第二、三组让学生独立完成。
观察:这里几组等式都是把什么数转化成什么数?方法是怎样的?
(板书:整数——假分数)
4、完成练习九6。
四、课作:练习九1、3;每日一题。
《假分数化成整数或带分数》教学设计篇2
教学内容:
54页例3及做一做,练习十三第4~10题
教学目标:
1.知识与技能:理解带分数的意义,能正确地读写带分数。使学生掌握假分数化成整数或带分数的方法,能正确地把假分数化成整数或带分数。
2.过程与方法:经历把假分数化成整数或带分数的方法过程,培养学生独立解决问题的能力。
3.情感态度价值观:培养学生团结合作的意识,养成良好的学习习惯。
重点难点:
假分数化成整数或带分数。
教学准备:
课件
教学过程:
一、复习导入
1.判断下面各数哪些是真分数,哪些是假分数。
2.观察以上的假分数,假分数可以分为几类?
3.揭示课题:假分数又可以改写成怎样的数呢?这节课我们来学习把假分数化成整数或带分数。(板书:假分数化成整数或带分数)
二、新课讲授
1.教学带分数的意义及读写方法。
(1)一个同学在吃橙子时说我吃了一个半。怎样用分数表示?
得到:一个半是1+ 的和,也可以写成1 。板书:1
(2)观察1 ,它是由哪两部分组成的?
板书
(3)提问:什么是带分数?
(板书:由整数和真分数合成的数叫做带分数)
(4)带分数的读法。
1 读作:一又二分之一
1 读作:一又四分之三
小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
2.教学例3:出示题目
(1)把假分数化成整数。
如何化简: =33=1 =84=2
你是怎样得到这两个结果的?
(2)把假分数化成带分数。
提问: 的分子不是分母的倍数,这种情况怎样转化?
提问: 化成带分数,怎样化简?
(3)小结:假分数化成整数或带分数的方法是什么?
①分子是分母的.倍数时,化成整数,用分子除以分母,商是整数。
②分子不是分母的倍数时,化成带分数,用分子除以分母,商是带分数的整数部分,余数部分是分数部分的分子,分母不变。
三、巩固练习
1.做一做第2题:独立计算,集体订正。
2.练习十三的第4~8题。
3.作业:练习十三9题,选作10题。
四、课堂小结
今天我们学习了什么,你又有什么收获?
板书设计:
把假分数化成整数和带分数
由整数和真分数合成的数叫做带分数
=33=1 =84=2
=65=1
《假分数化成整数或带分数》教学设计篇3
教学目标
1、理解并掌握把整数、带分数化成假分数的方法,能正确地把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系,进行初步的辩证唯物主义观点的教育。
教学重点、难点
重点、难点:正确地把整数、带分数化成假分数。
教具、学具准备
教学过程
一、复习铺垫
1、把下面假分数化成整数或带分数
3/351/516/47/716/3
9/521/7121/1170/716/1
2、在括号里填上适当的'数
1=()/31=()/41=()/9
二、教学新知
1、教学例4。
把1化成分母分别是2、3、4、5的分数。
(1)读题、理解题意后失声共同分析
1个圆可以分成2个1/2、3个1/3、4个1/4、5个1/5。
也就是:1=2/21=3/31=4/41=5/5所以1=2/2=3/3=4/4=5/5
(2)口答1=()/()=()/()=()/()=......
:1可以化成分母是任意自然数的假分数。
同理:整数可以化成分母是任意自然数的假分数。
2、教学例5。
(1)出示例5,读题理解题意,弄清题目要求。(所化的假分数的分母为3,必须把单位“1”平均分成3份。)
(2)边观察分析填数
()/3()/3()/3()/3
1234
看直线图,填上适当的数(3/3、6/3、9/3、12/3)。说出这些分数的分数单位是多少?各有几个这样的分数单位?
从以上可以看出,1里面有3个1/3,2里面有(3×2)个1/3,那么4里面有()1/3。
2=3×2/3=6/34=3×4/3=12/3
(3)把2和4化成分母是5的假分数。
(4)观察以上整数化成假分数的式子归纳。
整数化成假分数,用指定的分母作分母,用()和()相乘的积作分子。
2=3×2/3=6/3
指定分母
(5)练一练:
①口答:8=()/76=()/310=()/5
2=()/77=()/14=()/12=()/1
观察最后3题,任何自然数可以化成分母是1的假分数。
②课本P89第一题。
3、教学例6。
把2又3/4化为假分数。
(1)读题后,学生思考、试做。
(2)出示图例观察分析,验证。
2里面有(4×2)个1/4,在加上3个1/4,一共是(4×2+3)个1/4,就是11个1/4(11/4)
(3)2又3/4=4×2+3/4=11/4
看式子归纳:带分数化成假分数,用原来的分母作分母,用()和()相乘的积,在加上原来的()作分子。
(4)练一练:
①课本P89页第二题。
②课本P89页第三题。
三、练习反馈。
1、把各组数化成分母相同的假分数。
3又1/7和42又5/8和1
2、比较6和15/2的大小。
A、四人小组讨论,你用什么方法进行比较。
B、讨论后再练习。
C、反馈不同的方法。
D、归纳:两个数相比较,可以把它们同时化为假份数后进行比较,也可以化成整数、带份数进行比较。
3、比较下面各组数的大小
51/3和15/313/2、6和61/3
练习后反馈比较。
四、课堂作业
课本P89第4题(3)(4)第5题第二行。
五、课后作业《作业本》
在教学过程中,我结合图形,较直观地让学生理解整数、带分数化成假分数的算理,并最终归纳出方法。所以学生掌握得比较扎实,课堂上气氛活跃,发言积极。
《假分数化成整数或带分数》教学设计篇4
教学内容:教科书第47页,例7、例8、练一练,练习九第1~6题。
教学目标:
1、使学生探索并掌握把假分数化成整数或带分数的方法,知道带分数是整数和真分数合成的数。
2、使学生在探索中,进一步发展数感,培养观察、比较、抽象、概括等能力。
教学重点、难点:掌握把假分数化成整数或带分数的方法,知道带分数是整数和真分数合成的数。
教学过程:
一、复习引入
今天我们将继续研究假分数,谁来说说什么是假分数?(板书:假分数)你能举例说一些假分数吗?学生举出的例子老师分两栏板书,左边一栏写能化成整数的假分数,右边一栏写能化成带分数的假分数。
二、教学新课
1、教学例7。
然后指左边一栏,你能将这些假分数化成整数吗?小组里交流说说你的想法。
(2)交流汇报方法:
A.根据分数与除法的关系,用分子÷分母4/4=4÷4=110/5=10÷5=228/7=28÷7=4
B.根据分数的意义:4/4就是4个1/4,4个1/4是1;10/5是10个1/5,5个1/5是1,10个1/5是2。
C.还可以画图看一看。
哪种方法转化更简便?(分子÷分母)
(3)观察一下,能化成整数的假分数有什么共同特点呢?(分子是分母的倍数)
:能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,能化成整数。
完成练习九的第一题。
(4)那么:4/3、7/3、11/8能化成整数吗?为什么?(分子不是分母的倍数)
(6)带分数的意义。
出示数轴。
你能在数轴上找到4/3这个点吗?
(4/3是4个1/3,从0开始数出4个1/3。)
(3个1/3是1,在1后面再数1个1/3就是4/3。)
指出:分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。
如4/3就是3/3和1/3合成的数,1/3,读作一又三分之一。
说说5/3是几和几分之几合成的数?读作什么?数轴上的点在哪里?
2、教学例8。
(1)出示例8。
(2)怎样把11/4化成带分数呢?
尝试练习,巡视指导。
(3)交流汇报方法:
(可以画图;)
(11/4有11个1/4,8个1/4是2,3个1/4是3/4,11/4是23/4)
(11/4=11÷4=23/4)
(4)你认为哪一种方法化成带分数快速一些呢?
因此在实际运用中就可以用分子除以分母。
11/4=11÷4(=2……3)=23/4(商作为带分数的整数部分,余数作为分子,分母不变)
说说把假分数转化成整数或带分数的方法。
分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的.商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
3、完成练一练。
独立完成练习。
汇报方法,说说是怎么想的?
哪些假分数能化成整数,哪些假分数要化成带分数?
三、巩固练习
1、完成练习九第3题。
独立完成练习,汇报方法,集体核对。
2、完成第2题。
读题,理解题意。
尝试练习,说说你是怎样想到的?怎样改写?
如果看图,你能直接用带分数表示吗?你是怎样看的?
3、完成第4题。
关键要看清什么?(把“1”平均分成了几份)
怎样找比较快?说说你的方法。
4、完成第5题。
独立完成填空。
把不是0的整数化成假分数时,怎样化?(用整数与分母相乘的积作分子)
5、完成第6题。
独立完成。
汇报方法,说说想法。
还有其它的比较方法吗?哪一种方法比较快?
四、课堂
今天学习了什么内容?你又有了什么新的收获?8/11能化成带分数吗?带分数是假分数的另一种表现形式。
《假分数化成整数或带分数》教学设计篇5
教学内容:整数、带分数化成假分数
教学目标:
1、理解并掌握把整数、带分数化成假分数的方法,能正确的把整数、带分数化成假分数。
2、通过这两节课的计算,让学生体验形式与实质的关系进行初步的辨证唯物主义观点的`教育。
教学过程:
一、复习
假分数化成整数、带分数的过程。
二、引入新课
例4把1化成分母是2、3、4、5的分数
分析:一个圆可以分成2个1/2,3个1/3,4个1/4,5个1/5。所以1=2/2=3/3=4/4=5/5
结论:把整数”1“平均分成2份,
1可以表示分子、分母是任意自然数,而且分子和分母相同的假分数。
例5把2和4分别化成分母是3的假分数
分析:因为1里面有3个1/3,所以2里面有(3×2)个1/3.,4里面有(3×4)个1/3。
讨论:
(1)整数化假分数,用指定的分母做分母,用整数与分母相乘的积做分子。
(2)整数可以化成分母是任意自然数的假分数。
(3)任何自然数,都可以写成分母是1的假分数,并用这个自然数做分子。
例6把二又四分之三化成假分数
分析:2里面有(2×4)个1/4,再加上3个1/4,一共是(4×2+3)个1/4,
讨论:带分数化假分数,用原来的分母做分母,用整数和原来的分母相乘的积,再加上原来的份数部分的分子,
三、巩固练习
1、练一练
比较下面每组数的大小
四、
归纳
1、整数化成假分数,用指定的分母做分母,用整数和指定的分母相乘的积做分子,
2、带分数化假分数,用原来的分母做分母,用整数部分和原来的分母相乘的积,再加上原来的分数部分的分子做分子。
五、布置作业
反思:把整数、带分数化成带分数我觉得应遵从这样的教学过程:
1、首先应加强“1”的训练,强化1里面有2个1/2,3个1/3,4个1/4…………………。
2、在教学2里面有几个1/2、1/3、1/4………..。3里面有几个1/2、1/3、1/4………..让学生知道整数就有整数×分母个几分之几。
3、然后在教学带分数转化成假分数。
【《假分数化成整数或带分数》教学设计】相关文章:
分数化成小数的教学设计02-19
真分数假分数教学设计02-05
小数乘整数教学设计03-09
《除数是整数的除法》教学设计04-17
分数乘整数教学设计06-11
小数除以整数教学设计05-24
《小数乘整数》教学设计04-03
分数除以整数教学设计01-17
[合集]《除数是整数的除法》教学设计06-02