高一数学必考知识点总结

时间:2023-07-05 09:10:20 王娟 总结范文 我要投稿
  • 相关推荐

高一数学必考知识点总结

  总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以有效锻炼我们的语言组织能力,快快来写一份总结吧。那么总结要注意有什么内容呢?以下是小编为大家收集的高一数学必考知识点总结,欢迎大家分享。

高一数学必考知识点总结

  高一数学必考知识点总结1

  定义:

  x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

  范围:

  倾斜角的取值范围是0°≤α<180°。

  理解:

  (1)注意“两个方向”:直线向上的方向、x轴的正方向;

  (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

  意义:

  ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

  ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

  ③倾斜角相同,未必表示同一条直线。

  公式:

  k=tanα

  k>0时α∈(0°,90°)

  k<0时α∈(90°,180°)

  k=0时α=0°

  当α=90°时k不存在

  ax+by+c=0(a≠0)倾斜角为A,

  则tanA=-a/b,

  A=arctan(-a/b)

  当a≠0时,倾斜角为90度,即与X轴垂直

  高一数学必考知识点总结2

  1、集合的概念

  集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

  对象――即集合中的元素。集合是由它的元素确定的。

  整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

  确定的――集合元素的确定性――元素与集合的“从属”关系。

  不同的――集合元素的互异性。

  2、有限集、无限集、空集的意义

  有限集和无限集是针对非空集合来说的。我们理解起来并不困难。

  我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

  几个常用数集N、N_N+、Z、Q、R要记牢。

  3、集合的表示方法

  (1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:

  ①元素不太多的有限集,如{0,1,8}

  ②元素较多但呈现一定的规律的有限集,如{1,2,3…100}

  ③呈现一定规律的无限集,如{1,2,3…n…}

  注意a与{a}的区别

  注意用列举法表示集合时,集合元素的“无序性”。

  (2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

  高一数学必考知识点总结3

  1.“包含”关系—子集

  注意:有两种可能

  (1)A是B的一部分;

  (2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  高一数学必考知识点总结4

  形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  高一数学必考知识点总结5

  圆的方程定义:

  圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

  直线和圆的位置关系:

  1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

  ①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。

  方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

  ①dR,直线和圆相离、

  2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

  3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

  切线的性质

  ⑴圆心到切线的距离等于圆的半径;

  ⑵过切点的半径垂直于切线;

  ⑶经过圆心,与切线垂直的直线必经过切点;

  ⑷经过切点,与切线垂直的直线必经过圆心;

  当一条直线满足

  (1)过圆心;

  (2)过切点;

  (3)垂直于切线三个性质中的两个时,第三个性质也满足。

  切线的判定定理

  经过半径的外端点并且垂直于这条半径的直线是圆的切线。

  切线长定理

  从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

  高一数学必考知识点总结6

  一、定义与定义式:

  自变量x和因变量有如下关系:

  =x+b

  则此时称是x的一次函数。

  特别地,当b=0时,是x的正比例函数。

  即:=x(为常数,≠0)

  二、一次函数的性质:

  1.的变化值与对应的x的变化值成正比例,比值为

  即:=x+b(为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和轴的交点)

  2.性质:

  (1)在一次函数上的任意一点P(x),都满足等式:=x+b。

  (2)一次函数与轴交点的坐标总是(0,b),与x轴总是交于(-b/,0)正比例函数的图像总是过原点。

  3.b与函数图像所在象限:

  当>0时,直线必通过一、三象限,随x的增大而增大;

  当<0时,直线必通过二、四象限,随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当>0时,直线只通过一、三象限;当<0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,1);B(x2,2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为=x+b。

  (2)因为在一次函数上的任意一点P(x),都满足等式=x+b。所以可以列出2个方程:1=x1+b……①和2=x2+b……②

  (3)解这个二元一次方程,得到,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。

  2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人补充)

  1.求函数图像的值:(1-2)/(x1-x2)

  2.求与x轴平行线段的中点:|x1-x2|/2

  3.求与轴平行线段的中点:|1-2|/2

  4.求任意线段的长:√(x1-x2)^2+(1-2)^2(注:根号下(x1-x2)与(1-2)的平方和)

  高一数学必考知识点总结7

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、a—边长,S=6a2,V=a3

  4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

  5、棱柱S—h—高V=Sh

  6、棱锥S—h—高V=Sh/3

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6

  9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

  11、r—底半径h—高V=πr^2h/3

  12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6

  14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

  16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

  高一数学必考知识点总结8

  1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A}叫做函数的值域。

  2、函数定义域的解题思路:

  ⑴若x处于分母位置,则分母x不能为0。

  ⑵偶次方根的被开方数不小于0。

  ⑶对数式的真数必须大于0。

  ⑷指数对数式的底,不得为1,且必须大于0。

  ⑸指数为0时,底数不得为0。

  ⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

  ⑺实际问题中的函数的定义域还要保证实际问题有意义。

  3、相同函数

  ⑴表达式相同:与表示自变量和函数值的字母无关。

  ⑵定义域一致,对应法则一致。

  4、函数值域的求法

  ⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

  ⑵图像法:适用于易于画出函数图像的函数已经分段函数。

  ⑶配方法:主要用于二次函数,配方成y=(x-a)2+b的形式。

  ⑷代换法:主要用于由已知值域的函数推测未知函数的值域。

  5、函数图像的变换

  ⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

  ⑵伸缩变换:在x前加上系数。

  ⑶对称变换:高中阶段不作要求。

  6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

  ⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

  ⑵集合A中的不同元素,在集合B中对应的象可以是同一个。

  ⑶不要求集合B中的每一个元素在集合A中都有原象。

  7、分段函数

  ⑴在定义域的不同部分上有不同的解析式表达式。

  ⑵各部分自变量和函数值的取值范围不同。

  ⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

  8、复合函数:如果(u∈M),u=g(x)(x∈A),则,y=f[g(x)]=F(x)(x∈A),称为f、g的复合函数。

  高一数学必考知识点总结9

  1、函数的局部性质——单调性

  设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1

  ⑴函数区间单调性的判断思路

  ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1

  ⅱ做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

  ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

  ⑵复合函数的单调性

  复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

  ⑶注意事项

  函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

  2、函数的整体性质——奇偶性

  对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x),则f(x)就为偶函数;

  对于函数f(x)定义域内的任意一个x,都有f(x)=-f(x),则f(x)就为奇函数。

  ⑴奇函数和偶函数的性质

  ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

  ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

  ⑵函数奇偶性判断思路

  ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

  ⅱ确定f(x)和f(-x)的关系:

  若f(x)-f(-x)=0,或f(x)/f(-x)=1,则函数为偶函数;

  若f(x)+f(-x)=0,或f(x)/f(-x)=-1,则函数为奇函数。

  3、函数的最值问题

  ⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。

  ⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

  ⑶关于二次函数在闭区间的最值问题

  ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

  ⅱ若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。

  ⅲ若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

  若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

  若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

  高一数学必考知识点总结10

  二面角

  (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

  (3)二面角的棱:这一条直线叫做二面角的棱。

  (4)二面角的面:这两个半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

  二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

  棱锥的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (2)多个特殊的直角三角形

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

【高一数学必考知识点总结】相关文章:

高一物理必考知识点总结11-03

高一物理必考知识点总结4篇11-03

高一地理必考知识点总结10-08

初二数学必考知识点归纳12-07

高一生物必考知识点总结归纳精选五篇09-10

高中化学必考知识点总结通用03-07

高一数学知识点总结11-19

高一数学函数知识点总结12-01

高一数学知识点总结09-09