- 相关推荐
简单多边形的面积评课稿
作为一位不辞辛劳的人民教师,通常需要准备好一份评课稿,评课是加强教学常规管理,开展教育科研活动,深化课堂教学改革,促进学生发展,推进教师专业水平提高的重要手段。优秀的评课稿都具备一些什么特点呢?下面是小编为大家整理的简单多边形的面积评课稿,仅供参考,大家一起来看看吧。
简单多边形的面积评课稿 1
有幸聆听了宋老师执教的《简单多边形的面积》一课,听课后让我感觉自己要学的还很多。简单多边形的面积计算概念比较抽象,是对学过的基本平面图形面积的整合。本节课宋老师为学生提供了充足的自主学习的空间和时间,设置了“平面图形面积复习”、“组合图形面积学习”、“知识的应用与拓展”三个板块,从学生实际出发,创造性地使用教材,注重发展学生的个性,培养学生的能动性。在我们华杰学校新课改背景下,在“学生是课堂的主人”的课堂教学中,本课教学中,宋老师更多地体现为:引导者——给学生的学习提供明确的导航目标,组织者——为学生提供各种便利与支持,使学生能够比较轻松地完成学习任务。听课后我个人认为主要有以下几方面的亮点:
1.找准新旧链接,打好知识基础。
组合多边形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。宋老师在学习新知之前,放手让学生引领复习,这样的设计,既激发了学生的学习兴趣,又能体现从学生的已有经验和知识背景,找准新知的最佳切入点,为知识的迁移做好铺垫。
2.发挥学生主体性,重视自主探究。
各个小组的展示使学生主动参与学习活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生的参与意识和创新精神。在教学“简单多边形的面积计算”时,宋老师先留给学生充分的时间和空间,让学生在自己动手、动脑的基础上,再引导学生交流、验证自己的想法,看看自己没想到的.方法有哪些,根据自己的能力有选择地学习其它方法,一步步激发学生创造的欲望:我有不同的分割法。这样有序的学习,不仅发展了学生的智能,而且提高了学生的素质。
宋老师让学生自主选择求组合图形的面积,自主选择图形的分割法或拼补法,让学生经历组合图形面积计算的探究过程,通过宋老师的点拨概括,培养了学生分析、解决实际问题的能力,学生的学习过程积极主动。
3.学以致用,紧密联系生活。
数学与人类的生活息息相关,它来源于生活,又应用于生活。本节课中,宋老师紧密联系学生的实际经验,通过让学生计算学校的草坪和所住的小区平面图的面积,激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。
思考:
1.全课宋老师都没有引导学生比较分割图形越简洁,其解题方法也将越简单的,同时又要考虑分割的图形与所给的条件的关系,有些分割后的图形难于找到相关的条件,那么这样的分割方法就是失败的。其实这就是在交给学生解决问题的方法和策略怎样是简洁高效的。
2.新课例题与拓展题区别不大,是不是应该让学生采用自己喜欢的方法求组合图多边形的面积,一节课就2道题目是不是有些不合适。
简单多边形的面积评课稿 2
蔡老师上的这堂公开课,引题新颖,教学思路清晰,教学目标明确,重点突出,是一堂成功的公开课。
一、蔡老师首先以清朝吴友如的一首猜谜诗引出四边形,进而引出课题。引题新颖有趣,可以较好地激发学生的学习兴趣。蔡老师在整堂课中,教态清新自然,课堂语言和蔼可亲,给人如沐春风的感觉。学生积极参与学习活动,课堂氛围轻松活跃,这些都给我留下了深刻的印象。
二、在教学中,蔡老师运用类比与化归等数学思想方法来引导学生学习、探究四边形的定义、表示法以及内角和定理。教学思路清晰,教学目标明确,重点突出。在“四边形的内角和为3600”这个定理的证明时,给了学生一个开放的探究空间。这样的设计体现了新课程的理念,让学生在探究中学到了知识,也培养了学生自主学习的能力。尤其是将四边形的内角和转化为三角形的内角和这一方法,很好地将难点加以突破,从而将很大的课堂空间给予了学生探究多种多样的证明思路,培养了学习解决问题的能力。
三、蔡老师在整个课堂中能做到精讲精炼,充分体现以教师为主导、学生为主体的'教学理念。
四、几点教学建议:
1.在四边形的表示法教学中应强调四个字母的书写顺序。
2.在四边形内角和定理的证明中要注意进行合理的板书,在证明方法上还可以引导学生进一步地探究。
简单多边形的面积评课稿 3
今天听了蔡老师的一堂课给我带来了深刻的印象,下面我就蔡老师的《5.1多边形(1)》谈谈自己听课的几点感受:
在整个教学过程中,蔡老师注重学生问题意识的挖掘,做到以生为本,师生关系融洽,整个课堂非常活跃。
一、提供有价值的情境引入,激活学生数学问题意识
我们知道,学生的数学的学习过程就是问题解决的过程。数学问题解决在一定的问题情境引入中开始,这就要求教师提供有价值的材料,创造一种激发学生数学问题意识的情境,以引起学生内部的`认知矛盾冲突,激发起学生积极、主动的思维活动,再经过教师启发和帮助,通过学生主动地分析、探索并提出解决问题方法、检验这种方法等思维活动,从而达到掌握知识、发展能力的教学目标。首先,蔡老师让学生类比三角形定义、概念、表示法等得出四边形的定义以及边、角的概念、表示法等,遵循学生数学学习的认知规律,让学生在熟悉的情境中挖掘出未知的数学学习内容,让学生经历几何图形学习的方法,找出问题解决的共同点,以此让学生在以后多边形概念学习找到模型。
二、挖掘有“生命力”的数学问题,提升学生数学问题意识
在课堂教学中,挖掘数学教学的核心知识,让我们教师创设的问题有探讨的空间以及延伸的方向,这样才会使学生的数学问题意识的得到提升,对数学课堂教学的实效起到事半功倍的良好效果。本课教学中,蔡老师让学生类比三角形内角和1800猜想得出四边形内角和3600,再让学生探究四边形内角和定理,让不同的学生尝试用不同的证明方法进行问题解决,这样做符合我们几何教学的一般过程:从猜想到证明。同时,蔡老师还对四边形内角和定理的应用进行了适度挖掘。
从以上教学过程中,我们可以看到蔡老师拥有熟练现代化教学技术应用能力,非常直观地把我们所需要的教学情境创设出来了。青年教师的对教材的挖掘、对课堂的掌控非常好,但在听课过程中,本人有一点不成熟的做法想与大家商榷:
对四边形内角和定理的证明内涵挖掘能否再次深入。蔡老师和学生都在课堂中展示了四边形内角和3600的三种常见证明方法,本人认为能否在此处停留教学脚步,放开手脚让学生再多几种证明方法,最主要的是提炼这些证明方法的统一性,可以让学生对各种证明方法进行分类、归纳、提升,比如把3600进行各种分解,这样课堂教学的内涵是不是更加精彩一些。如果时间不够,也可以延伸到课后让学生来比拼和交流,这样数学的学习味道更加强烈一点。以上是本人对蔡老师课的一点不成熟想法,欢迎大家批评指正。
【简单多边形的面积评课稿】相关文章:
《多边形》评课稿03-28
《多边形2》评课稿12-16
(经典)《多边形2》评课稿07-31
《多边形2》评课稿12-26
《认识面积》评课稿04-16
面积计算评课稿04-13
认识面积评课稿06-27
《面积计算》评课稿03-15
《圆的面积》的评课稿03-01
认识面积评课稿03-19