高一数学解题技巧
在现实学习生活中,相信大家一定都接触过知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点是我们提高成绩的关键!下面是小编为大家收集的高一数学解题技巧,仅供参考,大家一起来看看吧。
高一数学解题技巧 1
数列解题技巧
考点:对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。
题型:一般分为证明和计算(包括通项公式、求和、比较大小),解题思路:
证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。
求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!!,三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的不一定那么容易的,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。
比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。
补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。
高一数学解题技巧 2
一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
三、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
高一数学解题技巧 3
1、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
2、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
3、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
高一数学解题技巧 4
初中教学同样受升学压力的影响,为了挤出更多的时间复习迎考,挤压新课学习时间,删减未列入考试的内容或自认为考试不重要的内容,造成学生知识结构不完整,基础知识掌握不扎实,如初中对函数和平面几何等内容的新课学习时间不够,学生感到困难,带着这样的阴影学生到高中碰到函数和立体几何等内容的学习就感到恐惧,没有学就产生了畏难情绪。
学习习惯和方法的指导不够
初中教学不太关注对学生学习习惯和方法的指导,忽视对数学思想方法的培养和渗透(现在学生的认知水平是可以接受的),热衷于通过大量的练习模仿来掌握解题方法,如对初中二次函数的学习。
高一数学解题技巧 5
高一数学大题结构安排:第三步就是将化简为一个整体的式子(如y=a的形式)根据题目要
A、三角函数与向量的结合求来解答:
B、概率论最值(值域):要首先求出的范围,然后求出y的范围
C、立体几何单调性:首先明确sin函数的单调性,然后将代入sin函数的单调范
D、圆锥曲线围解出x的范围(这里一定要注意2的正负性)
E、导数周期性:利用公式求解
F、数列对称性:要熟练掌握sin、cos、tan函数关于轴对称和点对称的公式。
高一数学解题技巧 6
1、特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2、极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3、剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4、数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5、递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6、顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7、逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8、正难则反法从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9、特征分析法对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。:
10、估值选择法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高一数学解题技巧 7
1、思路思想提炼法
催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。
2、典型题型精熟法
抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。
3、逐步深入纠错法
巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。
高一数学解题技巧 8
排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。
排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz—z—1的值。选项A为—2i、选项B为i、选项C为—i、选项D为2i。”
当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz—z—1=(1+i)(1—i)—1—i—1=—i,所以我们可以将A项排除,最终选择C项。
高一数学解题技巧 9
a、三角函数与向量解题技巧
平移问题:永远记住左右平移只是对x做变化,上下平移就是对y考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉做变化,永远切记。
b、概率解题技巧
它主要是考我们向量的数量积以及三角函数的化简问题看,同时可能会涉及到正余弦考点:对文科生来说,这个类型的题主要是考我们对题目意思的定理,难度一般不大。理解,在解题过程能学
只要你能熟练掌握公式,这类题都不是问题。会树状图和列表,题目也是相当的简单,只要你能审题准确,这类题型:这部分大题一般都是涉及以下的题型:题都是送分题;对理
最值(值域)、单调性、周期性、对称性、未知数的取值范围、平移科生来说,主要注意结合排列组合、独立重复试验知识点,同时会问题等要求我们准确掌握分解题思路:布列、期望、方差的公式,难度也是不大,都属于送分题,是要求第一步就是根根据向量公式将表示出来:其表示共有两种方法,一我们必须拿全部分数。
种是模长公式(该种方法是在题目没有告诉坐标的情况下应用),即,题型:在这里我就不多说了,都是求概率,没有什么新颖的地方,另一种就是用坐标公式表示出来(该种方法是在题目告诉了坐标),不过要注意我们曾经在这里遇到过的线性规划问题,还有就是篮球成功率与命中率和防第二步就是三角函数的化简:化简的方法都是涉及到三角函数的诱守率之间关系的类似
导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),题目。
解题思路:
第一步就是求出总体的情况
第二步就是求出符合题意的情况
第三步就是将两者比起来就是题目要求的概率
这类型题目对理科生来说一定要掌握好期望与方差的公式,同时最重要的是独立重复试验概率的求法。
高一数学解题技巧 10
1、简单化已知条件:
有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
2、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
3、确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
4、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。
高一数学解题技巧 11
1、数形结合
对于高中数学题的解题思路有许多种,但数与形结合是最常用的,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题,因为通过结合图形能快速的找出一些数学题的解题思路。
2、分类讨论
我们常常会遇到这样的情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。由于高中数学的变通性强,就会引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
3、假设法
(1)对于所求的未知量,先设法构思一个与它有关的变量;
(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
4、函数与方程
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系,运用函数的图像和性质去分析问题、转化问题和解决问题;
方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
以上是小编总结的高中数学解题思路,希望对同学们的学习有帮助。
高一数学解题技巧 12
1.换元思想
换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.
2.数形结合思想
数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过形往往可以解决用数很难解决的问题.
【高一数学解题技巧】相关文章:
高一数学解题技巧12-25
高一数学解题技巧有哪些08-04
高一数学解题技巧精选10篇01-11
高一数学解题技巧(10篇)01-11
数学解题技巧12-03
中考数学的解题技巧09-23
高考数学解题技巧09-25
数学解题技巧15篇12-03
数学解题技巧(15篇)12-04