运算教学设计
作为一位杰出的老师,时常要开展教学设计的准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的运算教学设计 ,仅供参考,大家一起来看看吧。
运算教学设计 1
教学内容:教科书第59页例1、例2及“做一做”,练习十五第1~5题.
教学目标:
1.通过学习,掌握分数四则混合计算的运算顺序,会正确进行计算.
2.培养学生知识的迁移类推及计算能力.
3.通过数学活动,激发学生学习数学的兴趣及运用数学知识的能力.
教具准备:多媒体课件一套.
教学过程:
一、设疑导入
出示一组算式.(课件出示.)
观察以上6个算式,讨论.
1.这些算式有什么共同之处?(都是四则混合运算式题.)
2.根据算式的特点,可以分为哪几类?
二、新课(小组合作,研讨新课.)
第2个问题可以先让学生小组讨论,然后派代表汇报.
学生的分类大致有以下几种:
1.依据计算步骤分为:
两步计算的有:
三步计算的有:
2.按算式中数的特征可以分为:
属整数四则混合运算的有:
属分数四则混合运算的有:
……
3.教师重点依据学生的第2种分类,先让学生说说分数四则混合运算的顺序.再具体说出下面各题应先算什么,再算什么.
教师根据学生的回答,在算式的下方标上运算步骤.(可用课件演示.)
4.出示下面一组算式.
(1)让学生仿照整数四则混合运算的顺序,分小组试着说出上面4道分数四则混合运算的顺序,分组进行汇报.
(2)学生汇报运算顺序时,仿照上面题的方法用红线标出运算步骤.
(3)让学生分小组试做,每人试做两题(一题有括号,一题无括号的).可协助完成.
(4)请其中一个小组派一名代表汇报每题的运算过程及结果,其他组进行核对.
5.让学生把整数四则混合运算式题与分数四则混合运算式题进行对比,找出它们的共同点,进而总结出分数四则混合运算的`运算顺序.
三、反馈练习
1.先说出下面各题的运算顺序,再计算.
+3÷ 2-×
23-×× ×+÷
2.请你用、1、、、、等数编几道分数四则混合运算式题.
(1)小组协助完成.
(2)每个小组成员选2题,先说运算顺序,再计算.
(3)各小组汇报编题及计算情况,对编得合理,计算准确的小组给予奖励.
四、巩固练习
1.完成练习十五第4题.
先独立做,再集体订正.
2.课堂作业:练习十五第5题.
板书设计
例1:+÷ 20-×
=+=20-
=1=20-
=19
先算二级运算,再算一级运算
例2:÷[(+)×][4-(-)]×
=÷[(+×]=[4-(-)]×
=÷[]=[4-]×
= =3×
=3=
=
有括号的,先算小括号里面的,再算中括号里面的.
教学设计说明
分数四则混合运算是在整数四则混合运算之后教学的.依据两者之间的联系,利用知识的迁移类推,让学生自主探索掌握新知识.
本课的教学分三个层次:第一层是通过给一组算式进行分类,设置疑问,导入新课.第二层,重点依据学生的第二种分类方法,即把算式依据数的特征分为整数四则混合运算和分数四则混合运算.在教师的引导下,利用新旧知识之间的联系及知识的迁移类推的方法得出分数四则混合运算的运算顺序.即一个算式中有两级运算,先算二级运算,再算一级运算.如果算式中有括号的,应先算小括号里面的,再算中括号里面的.第三层在学生掌握了分数四则混合运算之后,让学生根据教师给出的分数任意编出二、三步的分数四则混合运算式题.这样,通过数学实践活动,激发学生学习数学的兴趣,让他们主动参与到学习过程中.通过小组协作,共同学习新知识.第四步:让学生通过进一步练习,巩固所学的知识.
此教学以学生发展为本,以引导学生通过分类发现问题、分析问题,进而解决分数四则混合运算的运算方法.从而深刻地理解旧知与新知之间的联系.
运算教学设计 2
1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学重点:二次根式混合运算算理的理解。
教学难点:类比整式运算准确快速的进行二次根式的混合运算。
教学过程:
一、情境诱导
《二次根式混合运算习题课》教学设计-杨桂花
二、练习指导
(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)
练习提纲:《二次根式混合运算习题课》教学设计-杨桂花
三、展示归纳
1、学生汇报解题过程,生说师写;
2、发动其他学生评价补充完善;
3、师画龙点睛强调:
(1)二次根式混合运算的'运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。
四、变式练习
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)
《二次根式混合运算习题课》教学设计-杨桂花
五、小结
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)
六、布置作业
《二次根式混合运算习题课》教学设计-杨桂花
运算教学设计 3
教学内容:
义务教育课程标准实验教科书四年级数学下册第三单元页
教学目标:
1:使学生认识并掌握乘法交换律、结合律,在理解的基础上灵活运用。
2:使学生亲历“回顾再现——观察比较——迁移类推——归纳概括”的数学思维过程,培养学生的各种能力,从而初步形成适应终身学习的技能基础。 3:在探究问题的过程中感受数学知识之间的内在联系,培养学生的数学情趣。
教学重点:
使学生理解并掌握乘法交换律、乘法结合律。
【设计意图】学生刚刚学习了加法交换律、加法结合律,而乘法交换律、乘法结合律与之有很大相同之处。为了充分发挥学生已有的认知水平,运用已有的知识经验,我设计了以迁移类推为主的《乘法交换律、结合律》一课的教学,其目的是:使学生在老师的引导下,学会探究新知的方法,并在探究新知的过程中使学生的各种能力得到形成和发展。为学生的终身学习与发展奠定基础。教学过程:
一、复习铺垫
1:回答:前面我们学习了什么定律?请你用语言描述,用字母表示好吗?师:从刚才同学们的回答中可以看出来对加法交换律、加法结合律的掌握较好。我相信你们对于乘法一定学得也不错,下面的题目你们一定觉得很轻松。 2:旧知回顾
师:根据“七八五十六”这句口诀,请你写出两道乘法算式来。
师:你还能说出这样的口诀并写出相应的算式吗?(学生口答板书如下)7×8﹦56 6×7﹦42 3×7﹦21
8×7﹦56 7×6﹦42 7×3﹦21
【设计意图】通过引领学生再现旧知(加法运算定律、乘法口诀)为学生探索新知搭建知识的桥梁。
二:探索新知
(一)探索乘法交换律
1:观察上面每组算式,你有什么发现?用你自己的话说一说。两个(数相乘,交换位置,积不变)
2:引领验证
师:不是乘法口诀会不会也像你发现的那样呢?算了下面的两组题你会明白的。
25×4﹦17×23﹦
4×25﹦23×17﹦
3:概括乘法交换律
师:根据计算结果,你能再概括乘法运算中的这种规律吗?你认为怎样称呼这一规律?(乘法交换律)你怎么会想到这样的称呼?(有加法交换律想到的)师:正如你们说的,这就叫“乘法交换律”你们真会推想。请你们试着用字母表示它。(随机板书a ×b﹦b ×a)
【设计意图】在学生获得大量感性认识的基础上,通过引领,使学生运用迁移类推的方法轻松而自然地获取乘法交换律。
4:巩固知识
(1)口答:15×23﹦8×125﹦
(2)口答:17×()﹦36×()()×126﹦()×37
(3)下面每组算式同桌比一比,看谁算得快。换过来试一试,你对乘法交换律有什么更深的认识?
25×126×4﹦
(4)组织反馈交流
【设计意图】通过层层递进和开放性题目的练习,使学生进一步理解,共苦乘法交换律。通过比一比使学生感受乘法交换律在计算中的应用价值,初步建立简便计算的理念。
师:刚才,同学们的表现太棒了,简单的计算却蕴含着如此奥妙,希望同学们继续发挥潜能探索更加深奥的数学奥秘。
(二)探索乘法结合律
师:同学们知道每年的3月12日是什么节吗?你了解植树的重大意义吗?有一所学校组织了一批学生正在进行植树活动,同学们干得很起劲,我们一起去现场看看吧。(四年级的同学参加植树活动,一共有25个小组,每组里4人负责种树,2人负责浇水。)小组内说一说你了解到的信息。
师:根据现有的数学信息你能提出哪些数学问题?
【设计意图】有时候提出问题比解决问题更重要,通过课本的主题情境图,培养学生了解数学信息并能根据信息提出问题,在提出问题的过程中,学生的思维得到了锻炼。
2:解决问题初步建立乘法结合律感念
师:刚才同学们提出很多很有价值的问题,从中可以看出同学们发现问题的能力很强,相信你们解决问题的能力也一定很强。(1)请回答:负责挖坑、种树的一共有多少人?怎样列式解答?(指名口
答,板书:25×4﹦或者4×25﹦体现了什么定律?(乘法交换律)
(2)请同学们笔答:一共要浇多少桶水?(学生独立解答,同桌可以交流
意见)
(3)组织反馈交流(请学生上台来展示,要求不同列式的学生。)25×2×5 5×2×25 25×5×2
(25×2)×5(25×5)×2 25×(2×5)
(4)引导概括,初步建立乘法结合律概念
师:从上面算式和结果中,你又有什么新发现?(三个数相乘,无论哪两个先乘,积不变。)
【设计意图】在解决问题,合作交流的过程中,使学生感受到数学与生活的紧密联系和应用价值,这里既有乘法交换律的理解与应用,又让学生初步建立乘法结合律的概念,从而为进一步探索乘法结合律做好充分的.准备。 3:引导概括,形成乘法结合律
(1)激发引导
师:你们的发现非常符合上面算式的实际,很有发展性,这些算式中又蕴含着乘法一运算定律,请你们会想一下加法结合律,然后对上面的算式做出选择,写成两组等式,以小组为单位开始吧!
(2)(25×2)×5﹦(25×5)×2
(25×5)×2﹦25×(2×5)
(3)观察概括
师:通过观察说一说你的发现(指名说一说)
生:三个数相乘,先乘前两个数或者先乘后两个数,积不变师:说得太好了!你们知道该怎么称呼这一规律吗?(乘法结合律)我想你们一定是由加法结合律想到的,这种思考问题的方法叫迁移类推,在今后的学习中会不断的用到,下面我们共同的用字母表示乘法结合律(a ×b)×c﹦a ×(b×c)
【设计意图】通过引领学生继续运用迁移类推的方法探索乘法结合律,使学生在探索中能力得到提高,技能得到发展,从而形成适应终身学习的方法基础。
(4)巩固运用,提升乘法结合律(1)填□
5×(14×9)=(5×□)×14
125×(8×13)=(□×□)×13
a ×25×4=□×(□×□)
6×13×5=13×(□×□)
(2)算一算,比一比,想一想,你有什么感受?
15×12???15×2×6
36×25???9×(4×25)
【设计意图】在层次分明循序渐进并有开放性的练习中,使学生进一步巩固和理解乘法结合律。
三:新知推广,内化提高
29×4×5 4×(35×25)125×23×8
40×52×25 4×8×25×125 16×17×5
【设计意图】通过此环节,使学生进一步理解并巩固乘法交换律、乘法结合律,在解决问题的过程中灵活运用,使学生的知识,技能得到进一步的锻炼和发展。
四:回顾反思,拓展延伸
1:回顾反思
(1)知识回答:请你说说你收获了哪些知识?
(2)方法回顾:
师:看来你们的收获还真不少,你能和加法交换律、加法结合律比较一下,有什么新的想法?
2:拓展延伸
师:前面有同学提出“一共有多少同学参加了这次植树活动?”你想不想解决这个问题?你能想到几种列式方法?你一定会有新的发现,祝你成功!
【设计意图】通过对本节课知识、情感、方法的问题、梳理,使之内化为能力,通过课外延伸,激发学生进一步探究新知的欲望,为学习乘法分配律打下基础。
运算教学设计 4
教学目标
1、使学生了解加减统一为加法对简化计算所起的作用
2、能灵活运用加法运算律进行有理数的加减混合运算
3、培养学生观察、讨论、积极思维探索的能力
4、激发学生对数学的兴趣,培养学生热爱数学的情感。
教学重点、难点
能灵活运用加法运算律进行有理数的加减混合运算
教学过程
一、设问题情况
+(-1)-(-2)+(-3)-(-4)+(-5)-(-6)……(-50)
鼓励学生发言、讨论交流
1、出问题
(1)如何解该?
(2)如何将减号进行转变?
三、新课讲授
根据上题,我们知道有理数的减法是先把它化为有理数的.加法,即加减统一成加法
例:(-8)-(-10)+(-6)-(+4)如何统一成加号?
省略加号如何表示?-8+10-6-4
注:在一个和式里,通常把各个加数的刮号与它前面的加法省略不写
如何读呢?
按和式读做“负8,正0,负6负4的和”
按运算意义读做负8加10减6减4
例1、把(+1)+(-3)-(+2)-(-4)-(+6)写成省略加号的和的形式,并把它读出来。
解:原式=(+1)+(-3)+(-2)+(+4)+(-6)
=1-3-2+4-6
学生板演,练习用两种方法读出
例2、计算
(1)-24+3.2-1.6+3.5+0.3
(2)0-21+3-(-0.5)-(-6)-(+4)
解(1)因为原式表示-24,3.2,-16,-3.5,0.3的和,所以可将加数适当交换位置,并作适当的结合进行计算,即
-24+3.2-16-3.5+0.3
=(-24-16)+(3.2+0.3)-3.5
=-40+3.5-3.5
=-40 .
(2)0-21+3-(-0.5)-(-6)-(+4)
=0+(-21)+(+3)+(+6)+(-4)
=-21+3+6-4
=(-21-4)+(3+6)
=-25+9
=-16
提问:如何解?(多种方法)
法一:按正常顺序来解(从左到右)
法二:运用简便方法来解(加法交换律和结合律)
问:为什么要用加法运算律?该如何灵活运用?
如何使得计算简便?
1、正数和正数放在一起,负数和负数放在一起
2、互为相反数的放在一起
3、同分母的放在一起
4、能凑整的放在一起
四、练习
1、把下列各式写成省略加号和的形式,并说出他们的两种读法
(1)(-12)-(+8)+(-6)-(-5)
(2)(+3.7)-(-2.1)-1.8+(-2.6)
2、计算
(1)-30-11-(-10)+(-12)+18
(2)3 1/2-(-21/4)+(-1/3)-0.25+(+1/6)
五、小结:
1、加减法统一为加法
2、进行有理数加减混合运算的注意点
(1)互为相反数放在一起
(2)同分母的放在一起
(3)能凑整的放在一起
(4)小数与小数放在一起,整数与正数放在一起(等等)
六、作业:P47习题2.8(2、3)
运算教学设计 5
教学内容:课本第13页例3
教学目标:
通过学习使学生理解带中括号的四则混合运算的运算顺序,并能熟练习的进行运算。培养学生良好的学习习惯。
教学重点:理解带中括号的.四则混合运算的运算顺序
教学用具:幻灯、小黑板
教学过程:
一、提出学习要求
今天我们要学习带中括号的四则混合运算,要比一比,看谁学的快,看谁教学会的徒弟多,看谁教的徒弟运算的正确率高?你们说好吗?揭示课题:学与教大比武
二、学与教大比武
1、出示60+240÷[(30-10)×2]
⑴区分会与不会
⑵开始学与教大比武
⑶汇报学与教的情况
自己学会了吗?教会了几个徒弟?
2、考核(过五关)
请徒弟们接受老师的提问,同学们当评委,指出讲的不好的地方,和精彩之处。
⑴提问:
[]是什么括号?
在一个算式里既有小括号又有中括号,要先算里面的,再算里面的。
⑵划运算顺序
118+1536÷[12×(63-59)][60+240÷(30-10)]×2
[(60+240÷30)-10]×2(60+240)÷[(30-10)×2]
⑶下面的运算对不对?把不对的改正过来。
[700-(600+300÷15)]×2第一步运算顺序错误
=[700-(900÷15)]×2
=[700-60]×2
=640×2
=1280
⑷实力比拼
用递等式计算
[514-(123+217)]÷(29×6)
⑸评选先秀师傅出色徒弟
三、课堂练习
课本练一练第14页第3、4题
四、课堂总结
这节课你最满意的是什么?最大的改获是什么?
运算教学设计 6
学习目标:
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.
学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程
一、情境引入:
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
(1) = (2) =
二、探究学习:
(1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘.除运算法则是合理的.正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?
归纳小结:
(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ab ×cd =acbd 。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:ab ÷cd =ab ×dc =adbc 。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( ab )n=anbn
三、典型例题:
例1、计算:1. . 2。( )
例2、计算、1. 2.
归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.
四、反馈练习:
(1) (2) .
(3) (a-4). (4)
五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?
(2)你认为买大西瓜合算还是买小西瓜合算?
七、课堂小结:
1、分式的分子、分母都是几个因式的`积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
【课后作业】
班级 姓名 学号
1、 填空
(1) (2)
(3) (4)
(5) = (6)
(7)若代数式 有意义,则x的取值范围是__________.
2、选择
(1)下列各式计算正确的是 ( )
A. ; B.
C. ; D.
(2)下列各式的计算过程及结果都正确的是 ( )
A.
B.
C.
D.
(3)当 , 时,代数式 的值为( )
A.49 B.-49 C.3954 D.-3954
(4)计算 与 的结果 ( )
A.相等 B.互为倒数 C.互为相反数 D.以上都不对
(5)若x等于它的倒数,则 的值是 ( )
A.-3 B.-2 C.-1 D.0
3、计算
(1) (2)
4、中考链接(选作题)
已知aba+b =13 ,bcb+c =14 ,aca+c =15 ,求代数式abcab+bc+ac 的值。
运算教学设计 7
教学内容:100以内的连减运算。
教学目标:
1、使学生正确掌握连减笔算竖式的写法及能够准确计算100以内连减式题。
2、提高学生的计算能力和用多种方法解决问题的能力。
3、培养学生认真审题的良好习惯。
教学重点:能正确掌握笔算连减式题。
教学难点:正确计算100以内的'连减式题。
教具准备:主题图、投影片、小黑板
教学过程:
一、 学前准备:x k b 1.co m
1、 口算下面各题。
44+6 18-11 24+17
27-9 20-9 96-16
18-9-7 20-5-10 16-4-9
2、 笔算下面各题:
27 77 84 100
+36 -39 -26 - 82
———— ———— ———— ————
二、 探究新知:
1、 出示主题图,口述题意。
一年级的小同学去游玩,一共有92人,乘坐两艘船,一艘船最多乘26人,另一艘船最多能乘44人,有几位小朋友不能上船?
2、 独立探索,解决问题。
(1) 列式:92-44-26=22(人) 92减44是什么意思?再减26是什么意思?
(2) 92 48
-44 -26
———— ————
48 22
(3)列式:44+26=70 44加26是什么意思?92减70是什么意思?
92-70=22
三、 巩固练习:
1、算一算 89-36-27= 100-54-38=
、
2 85 56 71 64
-25 -17 -34 -12
———— ———— ———— ————
( ) ( ) ( ) ( )
- 18 -25 -17 - 7
———— ———— ———— ————
( ) ( ) ( ) ( )
4、 用自己喜欢的方法计算下面各题。
77-33-28= 96-39-45= 100-91-9=
5、 看统计表回答问题。
(1) 哪个班订的报刊最少?
(2) 二班订了多少份儿童报?
(3) 三班订了多少份小画报/
(4) 四班的小画报有多少本/小故事有多少本/
三、 课堂小结:这节课我们学习了100以内的连续减法,我们在计算时可以用第一个数依次分别减去后两 个数,也可以把后两个数加起来,再用第一个数一起减。
板书设计:
列式:92-44-26=22(人)
(1) 92 48
-44 -26
———— ————
49 22
(3)列式:44+26=70
92-70=22
运算教学设计 8
教学目标
1、使学生联系具体的问题情境,理解并掌握分数加减混合运算的运算顺序,能正确进行分数加减的混合运算。
2、使学生能用分数加减法解决一些简单的实际问题,进一步提高解决实际问题的能力,发展数学的应用意识。
3、使学生在学习活动中,获得成功的体验增强学习数学的自信心。
教学重点
联系具体的问题情境理解并掌握分数加减混合运算的顺序,能正确地进行分数加减的混合运算
教学难点
学生学会分析把总数看作单位“1”,求剩余部分占总数的几分之几之类的实际问题的数量关系,学会用分数减法或加减混合运算解决这类的实际问题
教学过程:
一、出示下图:
1、估计一下各部分各占总数的几分之几
2、想一想:你能提出哪些问题?
二、进行新课
(一)出示例题:
红山小学校园里有一个花园,其中月季花的面积占1/4,杜鹃花的面积占1/3,其余是草坪。草坪的.面积占几分之几?
(二)让学生独立解答
(三)选择典型的解法让学生板演
1-1/4-1/31-(1/4+1/3)
(四)让学生说说是怎么想的
(五)让学生独立计算
(六)问:通过解答这一道题目你有什么体会?
(七)小结:整数、小数四则混合运算的顺序同样适用于分数的计算
三、运用知识,加深理解
(一)计算下面各题
5/9+2/3-2/51-(1/2+1/6)
1、生独立计算
2、指名板演,集体评议(注意让学生感悟不同的算法)
(二)解答下面各题
1、有一块2米长的布,第一次用去2/5米,第二次用去1/3米,还剩多少米?
2、有一块2米长的布,第一次用去它的2/5,第二次用去它的1/3,还剩几分之几没用?
四、本课小结
通过本课的学习你有哪些收获?
运算教学设计 9
【三维目标】:
1.通过学习,使学生理解和掌握加法交换律和结合律。
2.通过学习,让学生学会用符号或字母表示加法交换律和结合律。
3.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
4.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
【过程方法】:
通过观察比较、归纳的方法、来进行教学。
【教学流程】:
一、情景导入
师:同学们你们喜欢体育活动吗?谁来说说你最喜欢哪项体育活动(学生说了他们各自的爱好,老师都给予了肯定)看来同学们都非常爱运动,俗话说的好,“会运动的孩子就会学习,就会生活。”
师:请同学们观察课本27页主题图,你从图中发现了哪些数学信息。(要求学生根据图说出了与数据有关的信息)
师:根据这些信息,你能提出哪些用加法计算的问题。
师:同学们提出的问题都非常的好,今天这节课我们就来研究其中的.两个问题。
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
二、探索加法交换律:
师:首先我们来解决第一个问题,怎样烈式?
生:40+56=96(千米)
师:还可以怎样列式呢?
生:56+40=96(千米)
师:由于这两个算式的结果相等,所以我们可以写成:40+56=56+40
师:请孩子们观察这两道算式有什么相同点和不同点?
生:相同点是都是40和56在相加,不同点是两个加数位置不同(交换了一下)。
师:你能举个象这样的例子?(学生非常踊跃)
师:同学们能说出这么多的例子,一定是发现了什么规律吧?把你的想法和同桌交流一下。(等待学生的交流)谁来把你的想法说给我们听一听。
师:(学生们有的是用自己的话概括,教师适时引导)两个加数相加,交换加数的位置和不变,叫做加法交换律。(板书加法交换律)
师:这样的例子有多少个?
生1:很多。
生2:无数。
师:那怎样来表示所有的例子呢?请同学们用自己的方法在随写本上写一写。
(有的学生用的是省略号、有的是图形、有的是字母、有的是汉字,通过和学生的交流都开始朝图形和字母去表示这个规律,并让学生到黑板上板书)。
师:同学们真不简单,能想出这么多方法来表示加法的交换律,通常我们是用a+b=b+a来表示加法交换律,其中a、b可以是任意数。
三、小组合作学习加法结合律:
师:刚才我们通过解决第一个问题,发现了加法的交换律,现在我们来解决第一个问题,看看有没有新的发现。
师:同学们先在下面做一做,点一生到前面做。
师:这位同学做的对吗?那它第一步求的是什么?解决的是什么问题?为了便于观察,我们把先算的打上括号,还是这个算式,怎样算比较简便?(强调算式的书写顺序不变)
(学生说,老师写)我们给先算的打上括号
(88+104)+96 88+(104+96)
=192+96 =88+200
=288(千米) =288(千米)
这两个算式的结果相等,所以我们可以写成
(88+104)+96=88+(104+96)
大家仔细观察这两个算式,又有什么相同点和不同点呢?
生:都是相同的数在相加,只是运算顺序不一样,但结果相等。
再比较下面两个算式,你又发现了什么?(小黑板出示)
(69+172)+28○69+(172+28)
155+(145+207)○(155+145)+207
(聪名的学生一看就知道用等号连接,但有的同学有点怀疑,让小组同学分工验证。
师:请同学们小组交流发现的结论,最后概括出规律。)
师:(学生的看括不规范)三个加数相加时,可以先把前两个数相加,也可以先把后两个数相加,和不变。叫做加法结合律。
师:谁上来用字母把它的规律表示出来。(a+b)+c=a+(b+c)
(揭示课题)今天我们所学的加法交换律和加法结合律都叫做加法运算定律。下面老师想出几个题目考考大家,看看大家对新知识掌握的怎样,有没有信心,。
四、巩固应用
1.根据加法运算定律在□填上适当的数,并说说依据了加法的什么定律?
□+270=270+80
(33+16)+84=33+(16+ □)
□ +56= □+44
400+500= □ + □
(25+□)+72= □ +(28+72)
2.下面算式符合加法交换律吗?为什么?
45+59=45+59 90+10=5+95
3.P28/做一做
4.P31/4、1
5.P31/3
运算教学设计 10
学习内容:
P28/例1(加法交换律)P29/例2(加法结合律)
课时
1课时
学习目标:
1.引导学生探究和理解加法交换律、结合律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
学习重点:
探究和理解加法交换律、结合律。
学习难点:
探究和理解加法交换律、结合律。
学习方法:
合作交流
学习准备:
主题图挂图
学习流程设疑导入
情景图导入
出示27页情景图,观察主题图,根据条件提出问题。
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
预习提纲
1、如何列式。
2、为什么列的式子不同?它们的结果是怎样。它们之间的关系是怎样的?
3、试着再举出几个这样的例子。
4、通过这几组算式,你们发现了什么?能不能用一句话说出来。
5、你能用自己喜欢的方式表示出加法交换律吗?
6、例2的式子能用什么方法来计算。有几种方法。
7、不同的.方法计算结果怎样。
8、再举出几个这样的例子。通过这几组算式,你们发现了什么?能不能用一句话说出来。
9、学生用自己喜欢的方式表示加法结合律。
展示互动
学生展示的方式、内容等
教师预设需补充、分析、强调的地方
1、将讨论的式子的关系向各组同学展示。
2、各小组展示自己小组记定律的方法。
3、分别说说是用什么方法记住这些运算定律的。
4、讨论为什么要学习运算定律。
两个加数交换位置,和不变。这叫做加法交换律。
先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。
探究提升
(△+☆)+○=△+(☆+○)用了什么运算定律
△
+☆=☆+△用了什么运算定律
归纳反思
学生小结本节课学习的加法的运算定律。
今天这节课你们都有什么收获?
你能把这些运用于以后的学习中吗?
达标测评
1、填空
(69+172)+
○69+(
+28)
300+
=600+
A+B=
+
+36=25+
2、P28/做一做
P31/4、1
板书设计
加法的运算定律
a+b=b+a
两个加数交换位置,和不变。这叫做加法交换律。
(a+b)+c=a+(b+c)
先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。
运算教学设计 11
教学内容:
P4/例1、例2(只含有同一级运算的混合运算)
教学目标:
1. 使学生进一步掌握含有同一级运算的运算顺序。
2. 让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、主题图 引入
观察主题图,根据条件提出问题。
(1)说一说图中的人们在干什么?"冰雪天地"分成几个活动区?每个区有多少人?你是怎么知道的?
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1. 滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2. "冰雪天地"3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授
1. 小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
2. 小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
3. 全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
(1)71-44+85
=27+85
=113(人)
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
(2)987÷3×6 6÷3×987
=329×6 =2×987
=1974(人) =1974(人)
第一种方法中,987÷3算出了1天"冰雪天地"接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)
第二种方法,因为是照这样计算,那么每天接待的`人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解"照这样计算"的意思。
强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习
(1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。
小组合作,减少重复练习。
(2)P5/做一做1、2
三、小结
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)
运算顺序为已有知识基础,让学生进行回忆概括。
四、作业
P8/1-4
板书设计:
四则运算(一)
1.滑冰场上午有72人,中午有44人离去, 2."冰雪天地"3天接待987人。照这
又有85人到来。现在有多少人在滑冰? 样计算,6天预计接待多少人?
72-44+85 (1)987÷3×6 (2)6÷3×987
=27+85 =329×6 =2×987
=113(人) =1974(人) =1974(人)
运算顺序:在没有括号的算式里,如果只有加、减法
或者只有乘、除法,都要从左往右按顺序计算。
课后小结:
运算教学设计 12
教学目标:
1.生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.生的头脑中强化小括号的作用。
3.习中总结归纳出四则混合运算的'顺序。
教学重 、难点: 掌握含有两级运算的运算顺序,正确计算三步式题。
教学用具:四则运算运算顺序归纳.
教学过程:
一、复习引入. 忆前两节课的学习内容,回顾学习过的四则运算顺序。
前面我们学习了几种不同的四则运算,你们还记得吗?谁能说说你在前面都学会了哪些四则运算顺序? (根据学生的回答进行板书。)
二、新授
出示例5(1)42+6×(12-4) (2)42+6×12-4
学生在练习本上独立解答。(画出顺序线)两名学生板演。全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)
谁能把我们学习的四则运算的运算顺序帮大家来总结一下?(学生自由回答。)
三、巩固练习 P12/做一做1、2 P14/4 (教师巡视纠正。)
四、作业 P14—15/2、3、5—7
板书设计: 四 则 运算
(1)42+6×(12-4) (2)42+6×12-4
=42+6×8 =42+72-4
=42+48 =114-4
=90 =110
运算顺序:(1)在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
(2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
(3)算式里有括号的,要先算括号里面的。
加法、减法、乘法和除法统称四则运算。
运算教学设计 13
教学内容: 教科书第35-36页
教学目标:
1、让学生联系解决生活实际问题的过程感悟、理解并掌握不含括号的三步混合运算的运算顺序,能正确地进行计算,并能用以解决三步计算的实际问题。
2、让学生在学习活动中增强类比迁移能力和抽象概括能力,获得成功体验,感受学习数学的乐趣。
教学重点、难点:
重点:理解三步计算运算顺序。
难点:运用三步计算解决实际问题。
教学准备:
教学光盘
板书设计:不含括号的混合运算
12×3+15×412×3+15×4
=36+15×4=36+60
=36+60 =96(元)
=96(元)
答:一共要付96元。
教学反思:
一得:
一失:
一联系:
教学过程:
一、基础练习:
37+26=76-39=605+59= 30×23=
12×8= 27+32=48+27=4500×20=
二、新授:
1、很多同学都喜欢下棋,我们一起去看看王老师买棋时遇到了什么数学问题:
演示例题,指名说说图上的信息:
买3副中国象棋和4副围棋。象棋的`单价是12元,围棋的单价是15元
读问题:她一共要付多少元?
这是一道购物的实际问题,遇到这类问题你马上会想到哪个基本数量关系式?
复习:单价×数量=总价
2、学生尝试列式,并交流:
(1)分步列式:12×3=36元15×4=60元36+60=96元
(2)综合:12×3+15×4
讲评:指着分步列式,让学生明确每一步算式的意思。
比较两个综合算式,让学生说说下面的算式为什么是错的?它这样算出的结果表示什么?
明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两样棋的总价加起来就是一共要付的钱。
3、运算顺序:
12×3+15×412×3+15×4
=36+15×4=36+60
=36+60=96(元)
=96(元)
比较这两种运算顺序,它们都对吗?哪个更好?为什么?
指出:这是一个三步混合运算,有乘有加,先算乘,即分别先算象棋和围棋的钱。
4、学生完成试一试:150+120÷6×5
做完后交流,可能会有个别学生先算乘,如果有可请学生说说正确的运算顺序,乘除在一起的时候,谁在前谁先算。
5、结合两题引导学生总结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
三、巩固练习:
1、学生独立做在自备本上:
80÷2+76÷4240÷6-2×1745-20×3÷451-36÷3+25
指名板演再结合具体问题交流。
2、下面的运算对吗?把不对的改正过来。(题略)
建议:做混合运算,要先观察该题的运算符号,可把先算的步骤划线表示,然后再算。
3、比一比,你能说出原因吗?
25×30+25×20840÷40-400÷40
25×(30+20)(840-400)÷40
第一组题可引导学生结合乘法意义来说,或是结合具体问题来举例说明。
四、解决实际问题:
1、(第4题)读题后让学生解释“人均居住面积”的含义和求法,并列出综合算式。
2、(第5题)分析“我们组比你们两组的总人数多6人”,指名说说“你们两组的总人数”怎么算?
3、(第6题)比较两小题,说说两题的联系。
4、把这3道联系实际问题做在作业本上。
五、总结:
通过学习,你有什么收获?
思维拓展:
4. 把下面三组用字母表示的算式分别列成综合算式。
⑴ a × b = c ⑵ x ÷ y = a⑶ y × b = x
X – y = ax × y = b a ÷ b = c
X + y= b b – a = ca +y = x
运算教学设计 14
知识目标:
通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
能力目标:
渗透从特殊到一般,再由一般到特殊这种认识事物的方法。培养学生观察、比较、抽象、概括等能力。培养学生的数感和符号感。
情感目标:
让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。
教学重点:
引导学生通过观察、比较、抽象、概括出乘法分配律。
教学难点:
应用乘法分配律解决实际问题。
教学工具
课件
教学过程
(一)生活引入,感知规律
1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2、爸爸和妈妈都对我们那么好,我们可以自豪的.说“爸爸和妈妈都爱我”。
3、爸爸和妈妈都爱我,这句话还可以怎样说?
4、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。
(二)开放探究,建构规律
1、情境引入
讲本学期开学,学校要为
一、二、三年级更换桌椅情况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意接着汇报?
2、第一次发现
(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?
板书:(50+60)×3 = 50×3+60×
3(75+68)×5 = 75×5+68×
5(80+65)×6 = 80×6+65×6
3、第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4、归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5、个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
(三)激活联系、应用规律。
1、请你把相等的两个算式连线。
(8+13)×4 41×(3+27)
3×(21+6) 7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8) 8×4 +13×
4(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2、根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
3、联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
(a+b)×c = a×c+b×c
运算教学设计 15
【单元教材分析】
关于混合运算,《标准》在1~3年级学段内容标准中没有提出具体要求,4~6年级学段内容标准阐述为:能结合现实素材理解运算顺序,并进行简单的整数四则混合运算(以两步为主,不超过三步)。但考虑到1~3年级学段,探索长方形、正方形的计算公式时,要用到两级混合运算,同时,根据学生的生活经验和知识背景,三年级的学生也能够解决一些需要两步计算的简单问题。所以在本册安排混合运算,主要内容是两级两步运算。这是本套教材第一次以单元形式独立编排混合运算。主要内容包括不带括号的两级混合运算、带括号的两级混合运算和简单的三步(可以两步解答)混合运算等。结合单元内容,还安排了“探索乐园”。
另外五年级以上还要再安排一次,主要学习三步计算问题和运算顺序。本套教材关于混合运算内容的安排有以下特点:第一,同级混合运算结合有关计算单元安排。如,加、减混合运算(包括带小括号的加、减混合运算),都是结合加、减法的计算学习的。第二,在知识内容构建上,打破“先学混合运算的计算方法,再解决应用问题”的传统教材体系,而是让学生在尝试解决问题的过程中理解混合运算的计算顺序。在混合运算的编排和活动设计上,都采取“呈现生活中的实际问题——学生自主尝试解决——试着写成一个算式”的过程来学习的。需要说明的是,学完相应的运算顺序后,再解决简单问题时,不要求学生必须列出综合算式。
【学情分析】
本单元教材是在学生认识了小括号、掌握了带小括号的加减混合运算的基础上学习的。此时的学生已经能够解决一些需要两步计算的简单问题了。这里主要是让学生经历将分步计算改写成混合运算的过程,使其体悟出混合运算的运算顺序。
【单元教学目标】
1.结合现实素材,理解两级混合运算的顺序,会进行两级混合运算的计算。
2.能灵活运用不同的方法解决生活中的'简单问题,能进行简单的、有条理的思考。
3.了解同一问题有不同的解决办法,初步学会表达解决问题的大致过程和结果。
4.在解决实际问题的过程中,感受数学运算与思考过程的合理性。
【单元教学重点】
理解两级混合运算的顺序,会进行两级混合运算的计算。
【单元教学难点】
了解同一问题有不同的解决办法,能灵活运用不同的方法解决生活中的简单问题。
第1课时不带括号的两级混合运算(P56~P57)
【课时教材分析】
第1课时(P56~P57),不带括号的两级混合运算。教材编排了两个解决问题的数学活动。活动一,教材呈现了饮料瓶的情境图和一共有多少瓶饮料的问题,让学生用原有的知识和生活经验尝试解决,在交流个性化计算方法的基础上,通过蓝灵鼠的“你能写成一个算式吗?”的问题,指导学生将分步计算的算式改写成一个算式,了解两级混合运算和分步计算的关系。再结合解决问题的过程,说一说改成后的算式怎样计算,理解含有乘、加的混合运算要先算乘法的道理。活动二,教材安排了常见的鞋子价钱问题,放手让学生尝试解决。鼓励学生通过将含有减、除的算式改成一个算式,并自己确定运算顺序进行计算。然后,通过上面的两个活动,引导学生归纳两级混合运算的计算顺序。
【教学目标】
1、在解决实际问题的过程中,经历自主探索,并尝试将分步计算改写成不带括号的两级混合运算的过程。
2、理解两级混合运算的顺序,会进行两级混合运算。
3、在自主解决问题、改写算式等活动中,初步感受混合运算顺序在实际应用中的合理性。
【教学重难点】
正确掌握两级混合运算的顺序。
【课堂实录】
一、出示练习,检查铺垫。
1、教师投影出示下列练习,学生独立完成。
把两个算式合成一个算式
236+254=490490-370=120——————
550-330=220120+220=440——————
2、学生汇报交流,并说说自己的想法。
3、教师卡片出示下列题目,指名说说先算哪一步。
227-291+126119+208-303227-(560-410)
二、创设情境,提出问题。
1、(教师课件出示课本56页的主题图):请同学们仔细观察情景图,说说从图上你都发现了哪些数学信息?
2、生交流,师板书:有3箱饮料,每箱有24瓶,箱外有8瓶。
3、那谁能算一算一共有多少瓶饮料?(师边提问边板书问题:一共有多少瓶饮料?)
4、生自己试着解决问题。
5、指名交流解决问题的方法,并请学生到前面板演。
6、(教师提出蓝灵鼠的问题):谁能试着将两个算式改写成一个算式。
7、生试着在练习本上进行改写,教师巡视并进行相应指导。
8、指名汇报改写后的算式并板演。
9、现在谁来说一说改写后的算式该怎样进行计算?当学生回答出先算乘法后教师要追问:为什么?这一步运算求的是什么?下面该算什么?这里又求的是什么?
10、(教师出示课后练一练第1题的第2道小题40×5-162)同桌讨论一下,如果遇到这道题,你会怎样解决?
11、同桌讨论运算顺序并交流汇报。
12、(教师引导学生比较两个算式):仔细观察这两个算式,在运算顺序方面你发现了什么?它们有什么共同点?
13、生小结:一个算式里,既有乘法又有加、减法,我们应先算乘法。
三、自主探究,解决问题。
1、(教师课件出示例2情境图):请同学们仔细观察这幅图,看看从这幅图上你又了解到了哪些数学信息和要解决的问题?
2、生交流汇报。
3、你能用你所学会的知识,独立解决这个问题吗?
4、生独立在练习本上解决。
5、师:谁来说说你的解决办法?
【运算教学设计 】相关文章:
分式的运算教学设计05-25
混合运算教学设计06-05
分数混合运算教学设计01-29
运算教学设计15篇05-03
运算教学设计(15篇)05-03
加减混合运算教学设计05-18
《混合运算》教学设计(精选10篇)05-16
加法运算定律教学设计02-19
《乘法运算定律》的教学设计06-05