圆柱的体积教学设计
作为一位不辞辛劳的人民教师,通常需要准备好一份教学设计,教学设计是实现教学目标的计划性和决策性活动。那么应当如何写教学设计呢?下面是小编帮大家整理的圆柱的体积教学设计,仅供参考,欢迎大家阅读。
圆柱的体积教学设计1
学情分析:
根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:
圆柱体体积的计算
教学难点:
圆柱体体积公式的推导
教学用具:
圆柱体学具、
教学过程:
一、复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
要求说出解题思路。
2.提问:什么叫体积?常用的体积单位有哪些?
3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、探索新知
1、根据学过的体积概念,说说什么是圆柱的.体积。(板书课题)
2、公式推导。(有条件的可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
3、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
4、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
5、教师演示。
把圆柱拼成了一个近似的长方体。
6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积 底面积 高
圆柱体积 底面积 高
8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
9、用字母如何表示。
V=sh
10、小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
11、教学算一算
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)
12、教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
三、巩固练习
课后“练一练”里的练习题。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。
圆柱的体积教学设计2
教学内容:
青教版九年义务教育六年制小学数学六年级下册第23—28页。
教材简析:
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。
教学目标:
1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。
2、经历探索圆柱计算公式的过程,进一步发展空间观念。
3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:
多媒体课件、圆柱体积学具、沙子等。
第一课时
教学过程:
一、创设情境,激趣引入。
谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)
课件出示:两个圆柱体冰淇淋。
谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?
(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)
设计意图:
从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。
二、回忆旧知,实现迁移。
谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?
(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
设计意图:
通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。
三、利用素材,探索新知。
㈠交流猜测
谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?
生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?
师谈话:你的`想法很好,怎样转化呢?
生讨论,交流。
生汇报,可能会有以下几种想法:
1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。
2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。
3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。
谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。
㈡实验验证
学生动手进行实验。
谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
学生合作操作,集体研究、讨论、记录。
设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。
四、分析关系,总结公式
1、全班交流
谈话:哪个小组愿意展示一下你们小组的研究结果?
引导学生发现:
转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。
2、分析关系
引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
3、总结公式。
谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。
(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)
谈话:你发现了什么?
引导观察:分的份数越多,拼成的图形就越接近长方体。
(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)
谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。
根据学生的回答教师板书:
长方体的体积 = 底面积 × 高
圆柱的体积 = 底面积 × 高
谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh
设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。
五、利用公式,解决问题。
自主练习第1题、第2题、第3题
设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。
六、课堂总结
圆柱的体积教学设计3
一、教学对象及学习内容特点分析:
圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。
二、教学目的:
学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。
学生能应用圆柱体积公式进行圆柱体积的计算。
学生能利用知识之间相互"转化"的思想探索解决新的问题。
三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。
四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。
五、教学过程的设想和点评
教师的教学行为学生的学习行为点评
第一阶段:创设情景,设疑引趣。
教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。
提问:小组讨论寻找解决这两个圆柱体积大小的方法。
1、学生小组讨论解决的`方法。
2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。
通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。
第二阶段: 自主探究。概括规律
1、电脑提供学生探索资源:
(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。
(2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。
2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的导出过程,从中找到推导圆柱体积公式的方法
2、学生通过观察圆柱公式的推导过程。
3、小组讨论填写实验报告。
4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。
圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。
第三阶段:拓展公式,自能训练。
1、公式拓展。
在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?
2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。
3、质疑
1、学生可根据已学的"圆的面积"公式导出。
(当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。
2、判断。并说明原因
(1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。
(2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。
(3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3
1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学
2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。
第四阶段:反馈学习、应用提高。
1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。
2、小结练习情况,及时表扬对而快的同学及小组
3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。
1、赛车游戏:看谁跑得快。
(1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。
(2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。
(3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。
(4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。
2、提高练习。考你智慧:看谁攀得高。
(1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。
(2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。
在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。
六、归纳总结、自我评价。
1、提出要求,学生谈收获。
2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。
七、对教学过程的设想和点评:
新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。
新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。
网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。
圆柱的体积教学设计4
教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题
教学目标:
1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。
2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。
教学重点:理解和掌握圆柱体积的计算公式。
教学难点:圆柱体积计算公式的推导。
教学准备:圆柱体模具。
教学过程:
预习作业检测
学习计算圆的面积时,是怎样得出圆面积的计算公式的?
求下面各圆的'面积
R=1厘米求Sd=4分米求Sc=6.28米求S
长方体与正方体的体积都可以用什么公式来表示?
圆柱底面积/平方米高/米体积/立方米
0.61.2
0.253
合作探究
你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。
课本上是怎么把圆柱体和长方体联系在一起的呢?
生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。
用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:
○1等份越多,拼成的物体越接近于长方体。
○2长方体与圆柱体等底等高。
○3长方体体积=圆柱体体积
○4圆柱的体积=底面积×高(V=sh)。
根据刚才的结论完成下面的题目:
○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,
它的体积是多少?生独立完成后,师有选择的找几位学生
的作业进行投影展示,全班交流评价。
○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这
个圆柱的体积是多少立方厘米?
引导学生读题,思考。指名说出自己想的过程。生独立解
答,展示、交流、评价。
当堂达标检测
1、“练一练”第1题。
2、练习七第2题。
3、“练一练”第2题。
教学反思:
圆柱的体积教学设计5
教学内容:
人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。
教学目标:
1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。
2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。
3、探索和解决问题,体验转化及极限的思想方法。
4、学会由未知向已知转化的学习方法。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:掌握圆柱体积公式的推导过程。
教学方法:尝试指导法
学法指导:猜想→讨论→操作→概括→尝试→辨析→总结
教学用具:圆柱的体积公式演示课件。
学习用具:准备推导圆柱体积计算公式所用的学具。
教学过程:
一、激疑引入
同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。
二、探究新知
1、猜想
现在该怎样来计算圆柱的体积呢?不妨大胆猜想一下好吗?
2、表扬鼓励,实践迁移
(1)有同学能把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!
让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。)
(2)操作:学生操作学具,切割拼合。
(3)感知:将圆柱体模具(已切好)当场演示。
①让一位学生把切割好的.一半拿上又叉开;
②另一位学生将切割好的另一半拼合上去;
③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。
(4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。
(5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?
(6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】
(7)概括总结
①让学生试着总结公式;
②老师在学生总结的基础上用课件出示
长方体的体积=底面积×高
↓ ↓ ↓
圆柱体的体积=底面积×高
用字母表示:v=sh
3、运用新知,尝试解答
[做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?
(1)尝试:让学生理解题意,自己尝试解答。
(2)展示:根据v=sh可得:75×90=6750(cm3)
(3)讲评并强调:计算体积时结果应用体积单位。
(4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面的直径d和高h呢?
让学生独立思考,写出计算公式,再相互交流。
得到:v=πr2h
[完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?
1、教师引导学生:要回答这个问题,先要计算出杯子的容积。
2、学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。
三、巩固练习
1、完成下表。
底面积/ m2 | 高/m | 圆柱的体积/ m3 |
7 | 3 | |
5.6 | 4 |
2、一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?
四、全课小结
同学们,今天我们学习了什么知识?你还有什么不懂的问题?
五、布置作业(练习三第2、3题)
板书设计
圆柱的体积
圆柱转化近似长方体
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
V柱=sh
V柱=πr2h
圆柱的体积教学设计6
【教学过程】
一、揭示课题,确定目标
谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)
启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)
引导:
(1)什么是圆柱的体积?
(2)圆柱的体积和什么有关?
(3)圆柱的体积公式是怎样推导出来的?
(4)圆柱的体积是怎样求出来的?
(5)学习圆柱的体积公式有什么用?
谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小
谈话:这堂课我们主要解决三个问题:(出示探究问题)
1、圆柱的体积和什么有关?
2、这个公式是怎样推导出来的?
3、学习了圆柱的体积能解决什么实际问题?
【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
二、温故知新,自学课本
1、提出问题
谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?
引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
统一为:长方体或正方体的体积=底面积×高
谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?
引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?
引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想
谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)
引导:圆柱体的体积既和底面积有关,又和高有关。
3、自学课本
谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?
启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)
引导:我们用图形转化的方法,求圆柱的体积。
谈话:这个办法很好。那么把圆柱转化成什么图形呢?
引导:长方体。
谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。
(用多媒体演示圆形的'转化过程,边出示、边交流)
【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
三、合作交流 发展能力
谈话:同学们观察一下,拼成的是什么图形?
引导:近似的长方体。
启发:说得很好,为什么说是近似的长方体,哪里不太像?
引导:长都是许多弧线组成,不是直的。
谈话:这里我们把圆柱分成16等分,还能分吗?
谈话:究竟能分多少份呢?
引导:无数份,可以永远分下去。
谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。
四、师生合作 归纳结论
谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?
汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。
谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。
汇报:
(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。
(2)转化后的近似长方体的高与原来的圆柱体的高相等。
因为:长方体的体积=底面积×高
所以:圆柱的体积 =底面积×高
(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)
长方体的体积=底面积×高
圆柱的体积 =底面积×高
交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)
引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。
现在请同学们把圆柱体积公式的推导过程再完整地说一遍。
谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。
通过分一分、拼一拼我们把圆柱转化成了近似的长方体。
通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。
【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。
圆柱的体积教学设计7
教学目标:
1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。
2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。
3、培养学生分析问题,解决问题及实践应用能力。
教学重点:
掌握有关圆柱的表面积和体积的计算,会综合运用
教学难点:
运用所学的知识解决生活中的实际问题。
学习过程:
一、复习回顾
1、下列图形的面积公式是什么?
长方形的面积=
正方形的面积=
平行四边形的面积=
梯形的面积=
圆的`面积=
2、长方体的表面积=
圆柱的表面积=
二、探究圆柱的体积公式:
圆柱的体积= 。
如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。
如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。
三、例题学习:
把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?
例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?
四、课堂练习
1、求下面圆柱的体积
1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米
3)底面直径5分米,高6分米
2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
圆柱的体积教学设计8
学 科:数学
教学内容:最新人教版六年级数学下册第三章《圆柱的体积》
教材分析:
〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:
教学目标
知识目标:
(1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
(2)通过操作让学生知道知识间的相互转化。
能力目标:
倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。
情感目标:
让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:推导圆柱体积计算公式的过程。
教具、学具准备:
采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的'?
(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
2、出示橡皮泥捏成的圆柱体。
出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?
(有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)
3、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)
二、新课教学
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)学生动手操作探究
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)
2、小组合作,探究推导圆柱的体积计算公式。
(1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)
老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。
(2)学生以小组为单位操作体验。
老师引导学生探究:
① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?
② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)
③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。
(3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体?
②圆柱的体积与拼成后的长方体的体积有什么关系?
③这个长方体的底面积等于圆柱的什么?
④长方体的高与圆柱体的高有什么关系?
(二)教师课件演示
1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 ①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?
圆柱的体积教学设计9
教学目标:
1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:
圆柱的体积公式演示教具,圆柱的体积公式演示课件
教学过程:
一、教学回顾
1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入
(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受
1、猜测圆柱的体积和那些条件有关。(电脑演示)
2、.探究推导圆柱的体积计算公式。
小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习
1、填空
(1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于
(),所以,圆柱体的体积等于()用字母表示
() 。
(2)、底面积是10平方米,高是2米,体积是
()。
(3)、底面半径是2分米,高是5分米,体积是
( )。
2讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积
V=兀r2 × h
(2)已知圆柱底面的直径和高,怎样求圆柱的体积
V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积
V=兀(C÷兀÷2) ×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑
五、作业
课后做一做第1、2、3题。
板书设计:
圆柱的`体积
长方体的体积=底面积x高
圆柱的体积=底面积x高
V=Sh
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
三、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术
是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。
圆柱的体积教学设计10
教学目标
知识与能力
1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
过程与方法
1.通过观察、实验、讨论,学生理解所学知识。
2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。
3.在讲解例题与巩固练习中,学生掌握基本的解题方法。
情感、态度与价值观
1.使学生感觉到数学就在身边,激发其学习数学的兴趣。
2.通过实验操作及设问,培养其创造性思维和大胆的猜想。
教学重点
圆柱体体积的计算
教学难点
圆柱体体积的公式推导方法
教学突破
本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。
教 具
圆柱的体积公式演示教具,多媒体课件
教学过程
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
2,复习相关知识,为新课教学作铺垫。
(1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)
(2)出示圆柱体物品,指名学生指出各部分名称。
二、新课教学
设疑揭题:
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:
① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的'体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
④ 底面积(㎡)高(m)圆柱体积(m3)
4 3
5 6
9 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。
⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
四、拓展练习
1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
五、课堂小结
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
六、布置作业
1.课后练习1,2题
2.拓展练习2题
板书设计
圆柱的体积
长方体的体积=底面积x高
圆柱——长方体 圆柱的体积=底面积x高
V=sh
圆柱的体积教学设计11
【教材简析】:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
【教学内容】:
p19-20页的内容和例题,完成“做一做”及练习三第1~4题。
【教学目标】:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
【教学重点】:掌握圆柱体积的计算公式。
【教学难点】:圆柱体积的计算公式的推导。
【教学过程】:
第一课时本册总课时:12 课时
一、复习
1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、什么叫做物体的体积?你会计算下面那些图形的体积?
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的`面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)
(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)
(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)
(3)通过观察,使学生明确:
长方体的底面积等于圆柱的底面积,
长方体的高就是圆柱的高。
长方体的体积=底面积×高,
所以圆柱的体积=底面积×高,
v = s h
圆柱的体积计算公式是:
v=s h
2、课堂练习:
(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)让学生解答和板算,最后师生共同完成.
解:v=sh
=75×90
=675(立方厘米)
答:它的体积是675立方厘米。
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的(v=π rh)
4.作业:
圆柱的体积教学设计12
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的.动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用,小学数学教案《第十一册圆柱的体积公开课》。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
底面积(㎡)高(m)圆柱体积(m3)
63
0.58
52
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三.巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)
四.拓展练习
1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
五.课堂小结:
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
(设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)
六.布置作业
1.A册习题2.7
2.拓展练习2题
教学反思:
本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。
圆柱的体积教学设计13
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。
教学方法:操作法、推理法、讲授法
教学过程:
一、复习引新。
我们以前学过哪些立体图形?
生答:长方体和正方体。
它们的体积是怎么求的?
长方体:长×宽×高,正方体:棱长×棱长×棱长。
二、教学例4。
1、出示长方体和正方体。
它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?
生答:体积=底面积×高,所以长方体和正方体的体积相等。
2、出示圆柱。
猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
生猜测:相等。
究竟如何,今天我们就一起来研究圆柱的体积。
板书课题:圆柱的体积。
问:刚才只是你们的'猜测,你准备怎么验证?依据是什么?(4人小组讨论)
生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。
依据是圆可以转化成长方形计算面积。
3、出示课件。
回顾圆的面积计算公式是怎样推导的。
4、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
5、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
6、教师演示课件。
把圆柱拼成了一个近似的长方体。
7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积=底面积×高
圆柱体积=底面积×高
9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
10、用字母如何表示。
11、出示例4。
现在你知道圆柱的体积与长方体、正方体的体积相等了吗?
为什么?
生答:体积相等,都是用底面积×高。
V=sh
三、巩固练习。
1、出示练习七第一题。
学生直接把答案填写在表中。
提问:你是根据什么填写的?
2、练一练。
这两题,你打算怎么计算?
生答:不知道底面积,要先算出底面积,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?
问:这道题和前面做的有什么不同?怎么计算?
生答:这是求容积的。所以数据是从里面量的。
4、练习七第2题。
观察下面的3个杯子,你能看出哪个杯子的饮料多?
请学生猜一猜。
请学生列出三道算式。
(1)3.14×(8÷2)×4
(2)3.14×(6÷2)×7
(3)3.14×(5÷2)×10
问:你能不求出结果直接比较出大小吗?
生答:第一个杯子的饮料多。
5、练习七第三题。
学生独立解答。
指名说说是怎样算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:这个保温茶桶不能盛150千克水。
四、总结。
今天这节课你学到了什么?
圆柱的体积教学设计14
教学内容:
课本第7页圆柱体积
教学目标:
理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提高知识的迁移和转化的能力。
教学重点:
圆柱体积计算
教学难点:
圆柱体积的公式推导
教学关键:
实物演示帮助
教具准备:
圆柱体积演示模型
教学过程:
一、复习铺垫。
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?
怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
二、学习探索。
这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
板书课题:圆柱的体积
出示目标:1、推导2、计算
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:这是不是一个圆柱?用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的'扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)
指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
小结:可以通过求切拼后的长方体的体积来求圆柱的体积。
板书:“长方体的体积=底面积×高”。
请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式:V=Sh
2、自觉书本第7、8页。
3、教学例3。
出示例3。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
(2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的?
①V=sh=40×1.8=72
答:它的体积是72立方厘米。
②1.8米=180厘米
V=sh=40×1800=72000
答:它的体积是72000立方厘米。
③40平方厘米=0.4平方米
V=sh=0.4×1.8=0.72
答:它的体积是0.72立方米。
④40平方厘米=0.004平方米
V=sh=0.004×1.8=0.0072立方米
答:它的体积是0.0072立方米。
(3)自觉书本第8页例3。提出质疑。
(4)做第9页“试一试”。
三、课堂小结。
通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。
四、巩固练习。练一练1~4题。
五、《作业本》第4页。
圆柱的体积教学设计15
一、教学内容
教材第25页 例5、例6
二、学习目标
1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。
2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。
3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。
三、教学重难点
1、重点:理解、掌握圆柱的体积公式的推导过程。
2、难点:圆柱体积公式的推导过程。
四、教学准备
多媒体课件
五、教学过程
<一>创设情境、生成问题
师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的.吗?(课件出示一个长方体和一个正方体)
生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算
师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。
板书:圆柱的体积(课件)
<二>探索交流、解决问题
1、猜想
师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?
(生自由猜想,并讨论交流)师适当板书记录
刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下
(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)
师:第一组图片中的两个圆柱有什么特征?
生:底面一样,但是高度却不一样,体积也不一样
师:第二组图片中的两个圆柱有什么特征?
生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样
师:那么通过刚才两个同学的回答,你能得出什么结论呢?
小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小
师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?
生猜想......
师:我们的猜想对不对,还是要用实验去证明
2、推导圆柱体积计算公式
师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法
生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积
师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸
(课件出示作业纸)对应和公式推导
选取小组的作业纸进行展示,有其他同学进行评定
课件演示结果
小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。
另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。
<三>巩固应用、内化提高
2、
3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
<四>回顾整理、反思提升
今天这节课你有什么新的收获说出来和大家一起分享吧!
【圆柱的体积教学设计】相关文章:
《圆柱的体积》教学设计06-26
“圆柱的体积”教学设计06-05
圆柱的体积教学设计15篇08-19
《圆柱的体积》教学设计15篇05-16
圆柱的体积教学设计(15篇)05-13
《圆柱的体积》教学设计(精选15篇)06-03
《圆柱的体积》教学设计(15篇)06-03
《圆柱的体积》教学设计集合15篇06-05
圆柱的体积评课稿11-06