《用数对确定位置》教学设计

时间:2024-10-17 19:34:37 嘉璇 设计 我要投稿
  • 相关推荐

《用数对确定位置》教学设计(通用16篇)

  作为一名默默奉献的教育工作者,总归要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计要怎么写呢?下面是小编收集整理的《用数对确定位置》教学设计,仅供参考,大家一起来看看吧。

《用数对确定位置》教学设计(通用16篇)

  《用数对确定位置》教学设计 1

  教学目标:

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学重点:

  会正确用数对表示具体的位置。

  教学难点:

  培养学生的空间观念。

  教学准备:

  每位学生准备红、绿两支水彩笔;练习纸一张。多媒体课件。

  教学过程:

  一、情境引入,激发需要

  提问:能说出我们班中队长坐在哪里吗?

  出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)

  质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)

  提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)

  提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)

  揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。板书:确定位置

  二、认识列、行和数对

  1、认识列、行的含义

  师:你的座位在整个会场中还可以用第几列第几行来表示

  板书列行

  师:在你的理解中,什么叫“列”?什么叫“行”?请你比划一下。

  板书:竖排为列横排为行

  电脑显示座位中的列、行

  2、统一定位

  (1)请3位学生上台凭票指出自己找到的位置。并简述是怎样找到的?

  师:个别同学有异议吗?

  情况一:都能正确找到位置。

  师:他们在找座位时有哪些相同的方法步骤?

  (发现他们在数列与行的时候,都很有序。先找列,再找行;确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。)

  情况二:两人找到了同一个座位。

  在矛盾中引出:由于同学们看的方法和角度不同,所以在找位置时,产生了不同的说法,看来得统一定位。确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。请刚才有争议的同学重新找到自己的座位。

  (2)教师指座位,学生口答。

  第1列第1行、第5列第7行

  第11列第7行、第2列第10行

  3、用数对表示位置

  (1)提炼数对

  师:在教室后面坐着几位老师,请你用既准确、又简洁的方法,把老师的位置记录下来。

  反馈:把学生的记录方法一一呈现在黑板上,作为进行比较的素材

  可能出现:a全部用文字b第2列第3行c(2,3)

  52(5,2)

  47(4,7)

  师:这几种的记录方法,有什么相同的地方?(相同点,都是用两个数分别表示列和行。)

  师:这几种方法,你喜欢哪一种?为什么?

  师:大家的方法已经很接近和数学家的方法。数学上用两个数分别表示列和行,中间用逗号隔开,再用小括号把两个数括起来,就叫做数对。

  (2)读法和意义

  读一读数对(2,3)

  数对(2,3)表示什么?这两个数(2,3)分别表示什么?

  (3)完整书写课题

  师:用有顺序的两个数表示平面中的位置,就是今天我们的学习内容。(板书完整课题:用数对确定位置)

  (4)数对的作用

  师:认识了数对,充分让我们体验到数学表达的简约之美。请用数对说说你现在的位置?同桌交流。小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

  三、用数对表示平面图上点的位置。

  1、动物园示意图

  (1)质疑,引入列行标准

  师:这是动物园的示意图,动物园内的大象馆、猴山、海洋馆等不规则地分布着,说说动物园大门的位置?(列行不明,难以描述)

  可用一定大小的方格来统一距离,那些分散的场馆就好似方格中的点了。

  (2)观察起点的位置

  方格中的0表示什么?(既是列的开始,也是行的开始;同时也指示了列从左往右,行从上往下。)

  (3)大门的位置用数对(3,0)表示。

  (4)数对表示大象馆和海洋馆的位置。

  表示第几列,第几行?你是怎样看的?

  (5)学生独立完成

  a、熊猫馆的位置在第()列第()行,用数对表示为(3,5)。

  b、海洋馆的位置在第()列第()行,用数对表示为(5,3)。c、在图上标出下列场馆的`位置。

  飞禽馆(0,1)大象馆(0,4)猴山(3,3)

  (6)观察,讨论,深化数对的意义。同时向学生渗透坐标思想。

  选择其中的两个位置进行比较,你发现什么?

  发现一:数对(3,5)和(5,3),同样的两个数写的位置不同,实际的位置不同,因此在写数对时要按照规定先列再行。

  发现二:猴山和海洋馆都在同一行上,因此第2个数都相同。

  师:这一行上还有许多点,它们都可表示(几,3)列数不确定而行数确定,你能用一个数对来概括这一行上的所有点的位置吗?

  发现三:熊猫馆(3,5)和猴山(3,3),数对中的第一个数相同,它们都在同一列上。用(3,y)可以表示这列上所有点的位置。

  四、应用数对,创作图形。培养观察比较,空间想象能力。

  1.根据顶点的数对,在方格中画出三角形。

  (1)想一想

  观察顶点的数对a(1,1)b(3,1)c(1,3),想象这是个什么图形?

  (2)画一画

  根据顶点的数对,在方格中画出这个三角形。

  (3)移一移

  画出这个三角形向上平移5个单位后的图形。说一说又是什么三角形?

  2.根据顶点的数对,在方格中定点连线,找规律(1)根据数对在图上描出各点,标上字母,并顺次连接a、b、c、d。

  a(1,9)b(2,8)c(3,7)d(4,6)

  (2)比较这些数对,你有什么发现?

  列变化,行也随之变化;但列与行的和是不变的。当列和行的和是10时,连接各点是一条线段。如果把这条线段的两端延长,想一想,还有哪些点也一定在这条斜线上?

  五、总结、延伸。

  1、师:今天这节课学了什么?你对数对都了解了哪些?

  2、在直线上确定一个点,只要一个数据;

  在平面上确定一个点,需要两个数据,就是今天我们学的数对;

  在三维空间里确定一个点,也需要数据,需要几个数据?

  《用数对确定位置》教学设计 2

  教学目标

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、揭示课题,对比引入

  谈话:今天这节课,我们学习有关确定位置的知识。(板书课题:用数对确定位置)

  出示一排座位图,提问:谁知道小明的位置在哪里?

  出示三排座位图,提问:现在小明的位置在哪里?(第1排第3个)

  讨论:同样是小明的位置,为什么我们的描述方法却发生了变化呢?

  [设计意图:通过引导学生进行对比,让其感受到从一维到二维空间的过渡,拓展学生的空间观念。]

  二、设置冲突,引发需要

  1.激活经验。

  谈话:我们每个人在教室里都有自己的位置,班长坐在哪里?同学们不用手指,能告诉听课的老师吗?

  学生可能回答:第×排第×个,第×组第×个,第×行左边×个,第×列第×个……(教师相应板书)

  2.认识列。

  提问:看黑板上这么多种说法,你有什么感觉?(太乱了,不统一)为了便于交流,需要把表述方法统一一下。我们把竖着排的叫做列。(板书:列)

  屏幕出示坐次图,从左往右依次是第一列、第二列……(课件依次标出座位图上的列数)

  提问:屏幕上的座位哪里是第一列?列数应该从哪边往哪边数?(从左往右数)列从左往右数,是从谁的角度看的呢?

  要求:谁能上来指一指我们教室中的第一列。(学生上台指)先想一想自己的位置在第几列,老师叫到第几列,请相应同学起立。

  3.认识行。

  谈话:竖排叫做列,横排叫做──行。(板书:行)确定第几行一般是从前往后数的。(板书:从前往后数)

  提问:这幅图上第1行在哪里?第3行呢?这里一共有几行?(课件依次在座位图上的行数)

  [设计意图:自由表示班长的位置,让学生感受标准不一所带来的麻烦,引出统一标准的必要性,从而明确列与行的表述方法。通过有意识的引导,消除可能由于观察角度而引发的对列的错误理解。]

  4.引发需要,探寻方法。

  提问:现在能用列和行说说班长的位置吗?(学生可能说:第几列第几行,第几行第几列,教师相应板书)

  课件将座位图改为圆圈图,谈话:我们用圆圈表示每一个同学,请大家用笔记录红色圆圈表示的位置。(快速出示几个表示学生位置的红点,学生来不及记录)

  设问:是老师的速度太快了,还是你们的记录方法不够简捷呢?怎样才能又快又准地记下每个同学的位置呢?同学们要不要再试一次?

  反馈:小军的位置你是怎么记的?(学生的记法可能是:4列3行;3行4列;4,3;3,4;3—4;4—3;……)

  提问:你喜欢哪一种方法,为什么?

  讲解:其实,数学上专门有一种用来确定位置的简捷方法,请将书翻到第15页,看看课本上是怎么表示的?板书:(4,3)。

  提问:书上也是用两个数表示位置,跟我们的写法有什么不同?这样写有一个名称叫数对。(板书:数对)

  提问:数对中的两个数各表示什么呢?你觉得这样规定有什么好处?用数对表示位置要注意什么?

  谈话:这个数对就表示小军的位置,读作“数对四三”。其他几个同学的位置,你会用数对表示吗?

  学生用数对表示小红、小芳、小华的位置。[设计意图:引入数对直接告诉学生也未尝不可,但数对产生的背景及必要性却不能为学生所感受。这里,让学生经历快速记录和优化的`过程,从而逼近数对简约、凝练的特质,催生出数对的雏形。这一过程是逐步“数学化”的过程。]

  5.体验唯一 ,加深理解。

  谈话:想一想,你在教室里的位置用数对怎么表示?写在纸上,和你的同桌比较一下,再和你前后的同学比较一下,你有什么发现?

  (1)起立练习。

  依次出示(1,5)(4,2)(6,5)(2,2)(8,3),请这些位置上的同学站起来大声说出自己的位置。

  (2)出示(3,5)、(5,3),学生起立。

  提问:这两个数对有什么相同点?(都由数字3、5组成)有什么不同点?(两个数字3、5组成顺序不一样,表示的位置也不一样)

  (3)依次出示(4,x)、(y,5)、(x,y),学生起立。

  指起立的学生,提问:你为什么起立?是怎么想的?

  [设计意图:当学生初步认识数对后,通过找同一列、同一行学生的位置,让学生初步感悟用数对确定位置的规律。接着安排了写数对、找数对等分层变式练习:任意数对、两个数字相同的数对、颠倒数字位置的两个数对,含有字母的数对,帮助学生进一步理解数对中各个数的意义。此环节层层递进,逐步渗透,以螺旋上升的方式解决了这节课的教学重点。]

  三、理解应用,发展思维

  1.抽象坐标。

  谈话:如果我们用线把这些圆点连起来,再把列和行的起点定为“0”,就可以变成一个方格图(课件动态呈现),它和刚才的圆点图相比更加简单清楚,这样的方格图也叫坐标系,我们到中学会慢慢研究它。在这个方格图上,小强的位置怎么表示?小丽和小刚的位置呢?(学生口答)

  [设计意图:张景中院士曾经说过:“小学生学的是很初等的数学,但是编教材和教学研究要有高观点。”本节课的内容不仅仅是简单地用数对表示位置,更应该建立和初中数学的联系。利用课件演示“实物图——点阵图——方格图—坐标系”的逐渐抽象过程,引导学生初步感悟平面直角坐标系,培养学生的空间观念。]

  2.渗透思想。

  出示:(1,5)、(3,3)、(4,2)。

  谈话:请同学们在方格图中描出下面的点,把这三个点用线连起来,你发现了什么?(形成一条直线)

  启发:不看图形,就看这些数对,你发现它们有什么特征?(行数与列数相加等于6)

  出示:(2,4)、(2,3)。

  提问:下面的两个数对,哪个会在这条直线上?

  谈话:再把这条直线向上平移两格,4个点的位置现在用什么数对表示?你发现了什么?(行数减少了2,列数不变)想一想,如果把这条直线再向右平移两格,各个数对会发生什么变化?(列数增加2,行数不变)

  指出:图形的特征会反映在数对上,数对的特征也会表现在图形中。

  [设计意图:这个环节渗透了数形结合的思想。用代数的方法研究图形,是笛卡尔解析几何思想的精髓。]

  3.理解应用。

  谈话:去年在上海我国承办了第41届世博会。下面我们来看看世博园的园区图(不提供数对),你能用数对表示这4个馆的位置吗?如果给你提供一个数对(标出希腊馆的数对),你能根据希腊馆的位置,写出另外3个馆的位置吗?

  小结:要想确定一个位置,首先要确定列数和行数。

  [设计意图:这一题的设计意在使学生体会到:确定位置必须在二维的平面上给定两个明确的参数,使学生感受平面直角坐标系的本质思想。]

  四、拓展知识,体会价值

  谈话:用数对确定位置不仅在日常生活中有着广泛的应用,在军事、地理等很多领域也会用到,为了描述地球上各点的位置,地理学家建立了经纬线的概念。(课件展示动画介绍经纬线)现在我们就从卫星上找找上海世博园中中国馆的准确位置。

  提问:通过今天的学习,你知道了什么知识?

  谈话:数对给我们的生活带来了方便,但数对的出现却是一件非常偶然的事情。(课件介绍笛卡尔由蜘蛛织网而创造出数对的过程)希望同学们能够向数学家们学习,善于观察,勤于思考,从生活中发现更多的数学问题。

  [设计意图:结合数对介绍经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。数对创造过程的介绍,对学生进行情感态度的教育,并将他们的数学思考引向深入。]

  《用数对确定位置》教学设计 3

  教学目标:

  1、通过练习,使学生进一步提高用数对确定位置的能力。

  2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

  教学过程:

  一、基础练习

  下面是某一地区的平面图。

  1、用数对标出环球大厦和购物中心的位置。

  2、图中(11,4)表示的位置是()。

  3、()和()在同一行上。

  4、小明从公园门口出来,到书店该怎样走?

  (1)独立完成解答。

  (2)集体评讲。

  二、提高练习

  1、练习三第5题。

  (1)理解题意,明白“行”“列”表示的意思。

  (2)根据(x,5)这个数对,说说x表示的是列数还是行数?

  根据这个数对能确定什么?它表示的可能是哪个班?

  (3)在小组中说说第(3)小题。

  这里的x,y可能表示哪些数?为什么?

  2、完成练习三第6题。

  (1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。

  (2)在小组中设计交流。

  (3)展示作业,汇报结果。

  你能用数对描述一下自己设计的摆放位置吗?

  你觉得自己设计的如何?优点是什么?

  互相评价:设计是否合理?是否美观?

  3、完成练习三第7题。

  平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)

  第一个怎么变化的?

  独立在书上方格中完成第(3)小题。

  在小组中完成第(4)小题。

  说说顺次连接四个点得到了什么图形?

  4、完成练习三第8题。

  理解题意,简单介绍国际象棋的棋盘。

  棋盘上的'列车行分别用什么表示?

  用g2表示白王,和数对表示的方法相同吗?

  完成第(2)小题的填空。

  在小组中互相说说黑车从C6~C2,是怎样前进的?

  三、阅读

  “你知道吗”

  四、课堂总结

  用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。

  《用数对确定位置》教学设计 4

  教学目标:

  1.结合具体情境认识行与列,初步理解数对的含义。能用数对来表示具体情境中物体的位置。

  2.结合具体学习内容培养观察、推理与表达的能力,渗透“数形结合”的思想,发展空间观念。

  3.经历由实物图到方格图的抽象过程,渗透坐标的思想,发展空间观念。

  4.感受数学与现实生活的联系,养成积极参与数学学习活动的习惯。

  教学重点

  用数对表示物体的位置。

  教学难点

  在方格图中根据数对来确定位置。

  教学过程

  一、创设情境,激趣导入

  1.播放歌曲《我和你》,提问:这首歌同学们熟悉吗?去年我国成功举办了第29届奥运会,我想同学们肯定非常喜欢这些出色的运动员是吗?今天老师带来了部分运动员的照片,想看吗?(课件出示照片)

  2.这些运动员中,你最喜欢谁,把他的名字写在学习卡上,然后在反面简单描述一下他在屏幕上的位置,我们做个猜猜看的游戏。

  3.读学习卡,同学们猜,(一个人的位置从不同的角度观察会有不同的猜测,让同学们产生疑问)过渡:怎样才能更清楚的更简单的表示出一个人的.位置呢?这就是我们今天所要研究的问题(板书课题)

  二、设置疑问,引出数对

  (一)列、行的含义和确定第几列、第几行的规则

  1.我们先以同学们的座次为例,刚才你们说到的竖排指什么吗?(学生指一指)在数学上称列,从哪开始数,你们有两种数法,习惯上从左往右数。(板书左右)那从观察者的角度,也就是以老师的角度来看,谁是第一列,请起立,第三列、第五列。

  2.横排指什么,数学上称行。从哪开始数,(板书从前往后)谁是第一行,请起立,第三行。

  3.谁站了两次,为什么?

  4.现在你能更清楚的告诉我你在教室内的位置吗?你朋友的位置,你班长的位置。

  (二)、发挥想象,创造符号,渗透“数形结合”思想。

  1.同学们用简短的语言表述了班长的位置,数学讲究简练,那你能用更简练的方式表示班长的位置吗?小组讨论

  2.展示小组的意见,全班评价,找出最简单最清楚的方式。

  小结:你们真厉害,用一对数就表示出了一个人的位置,知道这在数学上叫什么吗?(板书数对)数对表示法是确定位置的一种方法,它是法国数学家笛卡尔发明的,看来同学们又当数学家的潜能。

  3.那现在用数对表示出你在班内的位置,好朋友的位置。

  4.老师说数对,听一听是谁的位置,请你站一下好吗?(3,4)(2,5)(5,2),比较后两个,你有什么发现,(4,Y)怎么回事?(让学生体会数对表示法,两个数字缺一不可)

  5.小结:在用数对表示位置时应该注意什么?

  二、逐步抽象,掌握方法

  过渡:同学们用这么短的时间,就把自己在班级内的位置表示的这么清楚、简单,可能是太熟悉这个班级了,老师带来了我们班的座次表,(课件出示)

  1.怎样确定王红、李娟的位置,(让学生说一说列、行)然后说出数对。

  2.把学生换成圆点,再来找一找王红、李娟的位置。(指名上来指一指)

  3.根据数对在方格图中找位置。

  数学家想了更简单的方式,就是把圆点用横线和竖线连起来,(出示表格),你能看懂吗?再来找一找王红、李娟的位置。(指名上来指一指)

  4.学生在表格上找出这些同学的位置,(3,2)、(4,4)(1,4)、(3,3)、(3,4)、(2,4)、比较一下有什么发现?作为未来的数学家,你想告诉大家什么结论。

  三、学以致用

  刚才我们研究了用数对确定位置,现在回到上课时的游戏中,姚明的位置能更清楚的告诉大家了吗?把你喜欢的运动队员在屏幕中的位置用数对表示出来,再玩猜猜看的游戏。

  四、拓宽视野,总结延伸

  1.用数对确定位置在生活中的应用非常广泛,大家可以在网上查询。

  2.介绍笛卡尔发明数对的故事,进行思想教育

  《用数对确定位置》教学设计 5

  教学内容

  苏教版课程标准·数学五年级下册第15页。

  教学目标

  1、使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2、使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、设境置疑,产生需要

  1、(课件出示学生座位图)仔细观察这幅座位图,你知道小军坐在哪里吗?(板书:第4组第3个;第3排第4个)

  2、设疑:小军的位置没有变,为什么同学们的说法都不一样呢?

  3、你能具体说一说第4组第3个是怎么看的吗?第3排第4个你们又是怎么看的呢?

  4、揭题:由于同学们看的方法和角度不同,所以在描述小军位置时,产生了不同的说法。那么,怎样才能正确、简明地描述小军的位置呢?今天这节课我们就一起来进一步学习确定位置。(板书:确定位置)

  [设计意图:通过呈现学生比较熟悉的教室里有序排列的座位的场景,激活学生头脑中已有的描述物体位置的经验;然后通过交流,引发学生产生用一致的方式表示位置的需要。]

  二、逐步抽象,掌握方法

  1、列、行的含义和确定第几列、第几行的规则

  (1)认识场景图中的竖排和横排

  ①继续观察上幅座位图,在教室里,竖里面有几排?如果从左往右数的话,这是第1竖排,这是第2竖排……这是第6竖排。

  ②在教室里,横里面又有几排呢?如果我们从前往后数的话,这是第1横排,这是第2横排……这是第5横排。

  (2)认识圆圈图

  ①为了清楚地表示每个同学坐的位置,现在我们把他们坐的位置都用圆圈表示出来。(课件出示)

  ②为了突出小军坐的位置,我们把小军坐的位置用红色圆圈来表示。(课件出示)

  (3)认识列

  ①从这幅圆圈图上,如果从左往右数,现在你还能指一指第1竖排在哪里吗?第5竖排在哪里?第6竖排呢?

  ②揭示:其实每一竖排在数学上我们都把它叫做列。(板书:竖排 列)确定第几列我们一般都是从左往右数的。(板书:从左往右数)

  ③想一想这一列应是第几列?这一列又是第几列?这幅图上一共有几列?(课件依次出示第1列到第6列)

  (4)认识行

  ①刚才我们已经知道每一竖排都叫做列,而每一个横排在数学上我们把它叫做行。(板书:横排 行)确定第几行一般是从前往后数的。(板书:从前往后数)

  ②想一想第1行在哪里?第3行呢?在这幅图上一共有几行呢?(课件依次出示第1行到第5行)

  (5)巩固列和行的认识

  刚才我们已经知道了列和行,请同学们闭上眼睛想一想,我们是怎样规定列和行的?(随学生回答,课件闪动演示)

  [设计意图:先认识场景图中的竖排和横排,然后把具体的场景图逐步抽象成圆圈图,为后面教学作了孕伏和铺垫。在此基础上,教学列、行的合义和确定第几列、第几行的规则,一切显得水到渠成。同时,借助于多媒体课件,形象直观地帮助学生理解规则。]

  2、数对的含义和数对表示位置的方法

  (1)学习用第几列第几行表示位置

  ①从圆圈图上,你能找到第1列第1行的位置在哪里吗?

  ②你现在还能用第几列第几行来描述小军的位置吗?

  ③现在同学们都用第4列第3行来表示小军的`位置,看来用第几列第几行的方法来描述小军的位置真好,让我们有了一个统一的说法。

  (2)学习用数对表示位置

  ①揭示:小军的位置是第4列第3行,我们也可以用数对表示。(板书:数对)

  ②猜一猜:既然是数对,你能不能猜一猜有几个数呀?

  ③介绍数对表示位置。

  数对有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为小军的位置是在第4列第3行,所以在这里我们应先写列数4,再写行数3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写上一个逗号,把两个数隔开。完成板书:(4,3),这个数对就表示小军的位置,我们把这个数对读作“四三”。

  ④想一想:数对(4,3)表示什么意思?

  [设计意图:通过让学生找“第1列第1行”的位置这一活动,然后根据圆圈图中小军的位置,有意识地让学生说说小军坐在“第几列第几行”,统一认识。在此基础上,给出用数对表示的方法,结合板书使学生理解数对中的每一个数各表示什么,从而初步理解数对的含义。]

  (3)尝试用数对确定位置

  ①在这幅圆圈图中,你还能找到第2列第4行的位置吗?这一位置用数对该如何表示?这里的2和4又分别表示什么意思呢?

  ②在练习纸上的圆圈图中,任意找一个位置,说一说你找的位置是第几列第几行,用数对怎样表示。

  ③交流:你找的位置是第几列第几行,用数对如何表示?

  ④如果有一个同学坐的位置是用数对(6,5)表示的,你能在圆圈图上很快地圈出他的位置吗?你是怎样想的?

  ⑤在练习纸上写一个数对,让你的同桌在圆圈图上找出相应的位置,并互相说一说这个位置是第几列第几行。

  [设计意图:联系例题中的圆圈图,通过指定用第几列第几行表示的位置,让学生完整地写出表示这一位置的数对;以及根据数对去找某一位置这两个活动,帮助学生加深对数对含义的理解,初步学会用数对表示座位所在的位置。]

  三、联系实际,加深理解

  1、用数对表示教室里的位置

  (1)谈话:刚才我们用数对很快确定了圆圈图上的位置,那么在教室里,同学们的位置是在第几列第几行,用数对怎样表示呢?

  (2)明确教室里的列和行。

  ①如果站在老师的角度来观察同学们的位置,想一想第1列应该在哪里?第5列在哪里?第8列呢?

  ②列我们已经清楚了,那第1行在哪里呢?第4行呢?

  ③请第1列第1行的同学站起来。

  (3)用数对确定位置。

  ①观察一下数学课代表的位置,看看是在第几列第几行,用数对怎样表示?

  ②你的位置在第几列第几行,怎样用数对表示呢?先自己想一想再告诉你的同桌。

  ③猜同学:在我们教室里有个同学的位置用数对表示是(3,4),猜一猜他是谁呀?

  ④猜好朋友:现在你不用告诉大家你的好朋友是谁,你用数对把你好朋友的位置表示出来,让大家猜猜他是谁。

  [设计意图:因为圆圈图中的位置和实际教室里的位置稍有不同,所以教师加强了指导作用。然后,通过用数对描述数学课代表位置、自己位置的活动,以及根据数对猜同学、猜好朋友的活动,让学生结合教室中的位置,进一步巩固对列、行和数对的含义的认识。]

  2、用数对表示装饰瓷砖的位置

  (1)谈话:在生活中的很多现象都用到了数对的知识。(出示练习三第2题瓷砖图)这是小明家厨房的一面墙上贴着的瓷砖,你能用数对表示这四块花色瓷砖的位置吗?

  (2)仔细观察这四块花色瓷砖的位置和表示的数对,你发现什么规律了吗?

  3、国际象棋记录棋子位置的方法

  (1)谈话:数对不仅在生活中有着广泛的应用,在竞技体育中也经常用到数对的知识。(课件出示国际象棋比赛的画面)

  (2)介绍国际象棋(课件依次出示)。

  ①国际象棋的棋盘。

  ②国际象棋表示棋盘方格所在列数和行数的方法。

  国际象棋棋盘上通常用小写字母a~h分别表示棋盘方格所在的列数,用数字1~8分别表示棋盘方格所在的行数。

  ③国际象棋的棋子。

  (3)交流理解国际象棋记录棋子位置的方法。

  ①(出示练习三第8题图)现在棋盘上白王所处的位置用国际象棋专用的方法记为g2,你知道它是用什么方法记录白王的位置吗?这个g2表示什么意思呢?

  ②棋盘上的黑王、黑车、白兵各在什么位置?先说一说,再记录下来。

  ③如果黑马的位置用d5表示,你知道它在哪里吗?如果白马的位置用f7表示,你又知道它在哪里吗?

  4、用数对表示礼堂中的座位

  (1)(课件出示练习三第5题图)找一找在这张位置图上一年级一班的位置在哪里?六年级五班的位置在哪里?

  (2)如果有一个班级所处的位置用数对表示是(□,3),你能确定是哪个班级吗?可能是哪些班级呢?为什么?

  (3)如果老师告诉你,这个班级的位置用数对表示是(2,3),现在你知道是哪个班级了吗?

  [设计意图:练习的形式活泼有趣,富有开放性和人文性,既拓宽了学生的知识面,又能让学生体会数对对确定位置的方法的应用价值。在活跃课堂气氛的同时。更有效地巩固了用数对确定位置这一新知识。]

  四、拓宽视野,全课总结

  1、介绍

  (1)用经线和纬线确定地球上任意一点位置的方法。

  (2)部分城市的地理位置,如:北京在北纬39°57′,东经116°28′;无锡在北纬31°35′,东经120°39′。

  (3)经度和纬度在航海、航天、气象、军事等方面的运用。(课件出示相关图片)

  2、全课总结

  (1)讲述:用经度和纬度确定位置和我们用数对确定位置的道理是一样的。

  (2)课外作业:数对的知识在生活中的运用很广泛,有兴趣的同学课后可以通过上网、看书等方式搜集这方面的资料。

  [设计意图:结合数对介绍地球仪上的经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。布置的作业由课内向课外拓展,可以使学生将书本知识与生活实际进行链接,感受数学与生活的密切联系,将数学思考引向深处。]

  《用数对确定位置》教学设计 6

  教学目标

  1、在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2、使学生能在方格纸上用数对确定位置。

  教学重难点

  教学重点

  能用数对表示物体的位置。

  教学难点

  能用数对表示物体的位置,正确区分列和行的顺序。

  教学工具

  多媒体课件

  教学过程

  一、导入

  1、我们全班有很多同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新授

  1、教学例1

  (1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。

  (3)教学写法:某某同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的.位置吗?

  2、练习

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  3、教学例2

  (1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“熊猫馆”“海洋馆”“大象馆”的位置。

  三、练习

  1、P20做一做

  (1)学生独立找出图中的字母所在的位置,指名回答。

  (2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、P23第7题

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、作业

  练习五第1、2、3、4、5题。

  课后小结

  生活中还有哪些是用数对确定位置的例子,你能举一些吗?

  课后习题

  1、音乐课,聪聪坐在音乐教室的第4列第2行,用数对(4,2)表示,明明坐在聪聪正后方的第一个位置上,明明的位置用数对表示是( )。

  A.(5,2) B.(4,3) C.(3,2) D.(4,1)

  2、如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A.锐角 B.钝角 C.直角 D.等腰

  《用数对确定位置》教学设计 7

  教学目标:

  1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。

  2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。

  3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

  重点难点:

  理解数对的含义,能用数对表示位置

  课前准备:

  课件

  教学过程:

  一、谈话导入

  师:同学们,上学期时间我们学校进行了课间操的展示活动,这是我们学校某班的同学(课件),在这次活动中小强是表现最出色的一个,你能说一说小强在什么位置吗?

  生:从右向左数第4排的第2个。

  师:谁还想说?

  生:从左向右数第2排的第3个。

  师:还有不同的说法吗?

  生:从后往前数,第4排的第3个。

  师:怎么同一个人的位置有这么多种说法呢?

  生1:人们是从不同的角度和不同的方位观察的。

  生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。

  师:正像刚才大家所说的,一个人的位置不变,但由于人们观察的角度不同,描述位置的.方法就不同。刚才大家在描述小强位置时,你有你的说法,他有他的说法,感觉怎样?

  生:有点乱。

  师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)

  【设计意图】从学生的实际情况和具体特点出发,了解已有的生活经验和知识背景。同时设置如何描述方阵中事物的位置,感受描述方法不统一带来的不便,体验统一描述方法的必要性。

  二、用列与行确定位置

  师:刚才同学们在描述小强的位置时,用到了“排”,“个”等词来描述位置,你们认为怎样为一排?

  生:横着是一排。

  师:还有不同意见的吗?

  生1:竖着也可以看作一排。

  生2:排是直的。

  师:有横排,也有竖排,在描述位置时很容易混淆了,在数学上我们通常把竖排称为“列”,把横排称为“行”。(板书:列和行)大家认为哪为第一列合适?

  生1:最左边的为第一列。

  生2:最右边的为第一列。

  师:你们认为从哪边起为第一列合适?

  生:最左边为第一列。

  师:能说说你的理由吗?

  生:我们观察的时候一般是从左边开始数的,这是习惯。

  师:这位同学说得多好啊,根据人们的习惯,我们通常把最左边的一列称为第一列,请你找到第2列,第3列…(课件)

  师:哪为第一行呢?

  生:最前面的是第一行。

  师:自己找一下第2行,第3行……

  师:你能用列和行来描述小强的位置吗?

  生:第3列第2行。

  师:还有不同说法吗?

  生:第2行第3列。

  师:在数学上我们通常先说列再说行。小强的位置可以说是在第3列第2行。(板书:第3列第2行)

  【设计意图】尊重学生原有的知识经验,创设情境激发学生的创造思维。通过不同理解、不同表述,让学生再次体验产生“统一标准”即做出规定的必要性。渗透正确的描述顺序,分解难点,为理解“数对”这一抽象的概念奠定基础。]

  三、探讨用数对确定位置

  1.抽象点子图。

  师:同学们观察,圆点代替学生(课件:人物图渐变成点子图),你还能找到小强的位置吗?

  生:能。

  师:你能说说是怎样找到的吗?

  生:先找到第3列再找到第2行,交叉的地方就是小强的位置。

  师:这位同学不但找到小强的位置,而且还介绍了自己寻找的方法。

  师:小青的位置在第几列第几行呢?

  生:第1列第4行。

  师:小刚的位置呢?

  生:第4列第5行。

  师:其它点的位置你能用列和行来表示吗?

  生:能。

  师:你能说出几个点的位置?

  生:所有点的位置。

  师:其实每一个点的位置我们都可以用第几列第几行的方法来表示。

  【设计意图】 通过让学生观察点子图的变化,培养学生抽象思维的能力,渗透数学的简捷性。

  2.探究用数对确定位置的方法。

  师:我们用第几列第几行的方法来表示位置,这个方法的确很简单。我们能不能用数学上的数或符号等创造出一种更简捷的方法呢?有没有这样的方法呢?同桌两人商量一下,如果有,请记录在小卡片上。

  学生活动,部分学生板书自己的表示方法。

  师:刚才我看到在开始时,大家都皱着眉头,可是后来经过努力都创造出了自己的方法,下面同学们来看这几种表示方法。谁来介绍一下你们自己的表示方法?

  (1)3列2行

  师:谁创造的这种表示方法?说一说你是怎样想的。

  生:这样表示很明白,而且比第3列第2行更简单了。

  (2)(3 2 )

  师:这种方法又是怎样想的呢?

  生:用竖线表示列,用横线表示行。

  师:这位同学很有自己的想法。

  (3)3 2

  师:这种方法是谁的创意?

  生:为了区分列与行,用圆圈表示列,三角表示行。

  师:这位同学很有创意。

  (4)3、2

  师:谁能看懂这种方法?

  生:用点把列与行隔开,这样表示非常方便。

  (5)3 2

  师:这种方法是怎样想的 ?

  生:我用竖线把行与列隔开。

  师:谁能对这些方法发表一下自己的看法?

  生1:我认为用第4种方法很方便,而且能表示第几列第几行。

  生2:这种方法虽然方便,但是万一看成三点二怎么办?

  生3:如果换成逗号就好了。

  师:同学们不但对方法进行了评价,而且还提出了自己的建议。

  师:谁还想评价一下其他的方法?

  生:我认为第一种方法比其它方法更容易懂一些,像其它的方法:三角、竖线等还要加以说明,别人看了不明白,而3列2行很容易明白。

  师:3列2行看起来的确很明白,可是与其他方法比呢?

  生:用3列2行表示不简单。

  师:明白了又不简单,简单了又不明白。其实大家在这么短的时间内创造出了这么多的方法已经很了不起了。这些方法有共同点吗?

  生1:都有3和2。(板书)

  生2:都有列和行。

  师:而且大家都想到了把列和行隔开,正像刚才大家说的我们用逗号把列和行隔开,因为表示一个人的位置,是一个整体所以再加上一个小括号。像这样用一对数来表示位置的方法称为数对。小强的位置可以用数对三二表示。

  师:小青的位置怎样用数对表示?

  生:(1,4)。

  师:小刚的位置呢?

  生:(4,5)。

  师:其它的位置我们可以用数对表示吗?

  生:能。

  师:你感觉用数对表示位置怎样?

  生1:非常简单。

  生2:既简单又准确。

  师:经过我们大家的努力,我们探讨了一种既简单又准确的表示位置的方法,也就是用数对来确定位置。(补充课题:用数对确定位置)

  【设计意图】让学生在具体的活动中进行独立思考,鼓励学生发表自己的意见,给学生提供了创造的机会,充分展示学生思维过程的机会。学生个性化表示的过程,就是感知、理解数对的过程,让学生亲身经历知识的形成过程,深刻理解概念。

  四、在方格图上确定位置

  师:同学们仔细观察,发生了什么变化?(课件展示渐变的过程)

  生:小圆点没有了,用横线和竖线穿起来了。

  师:还有其它变化吗?

  师:你是怎样找到的呢?

  生:根据小强的位置用数对(3,2)表示,只要找到第3列第2行就可以了。

  师:不仅小强、小青的位置我们可以用数对表示,今天同学们所在的位置也可以用数对来表示。在表示之前,首先要知道什么呢?

  生:一共有几列几行。

  师:哪是第一列呢?

  生1:从右边数。

  生2:从左边数。

  师:我们通常以观察者为标准,左边起是第一列。你认为哪是第一行呢?

  找一找自己的位置,然后用数对表示出自己的位置并记录在圆形卡片上。

  部分学生的卡片贴在黑板的格子图上。

  师:第一位同学的位置用哪一个数对表示?

  生:(1,2)。

  师:第二位同学的位置用哪一个数对表示?

  生:(3,1)。

  师:你能在格子图上找到自己的位置吗?

  生:能。

  【设计意图】 将人物图抽象为点子图,再将点子图抽象为方格图,引导学生经历知识的形成过程,渗透“数形结合”思想,发展空间观念。

  五、练习

  1.捉迷藏

  2.找到石榴王和石榴仙子在哪

  3.用数对表示各顶点的位置

  4.会说话的字母

  【设计意图】 通过练习,拓展学生的思维,进一步体验“坐标”思想,为将来进一步学习平面直角坐标系打下基础。

  六、小结

  其实在我们的生活中,还有很多地方也是利用了数对的方法和思想确定位置,请同学们课下继续研究。

  《用数对确定位置》教学设计 8

  教学目标

  1 知识与技能:

  让学生结合具体情境认识行与列,初步理解数对的含义;

  能在具体情境中用数对表示物体的位置。

  2过程与方法:

  使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

  3 情感态度与价值观 :

  渗透“数形结合”的思想,发展学生的空间观念。

  体会生活中处处有数学,产生对数学的亲切感。

  教学重难点

  1 教学重点

  经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

  2 教学难点

  灵活运用数对知识解决实际问题。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,激趣导入

  【师】课件出示多媒体教室上课情境图。

  【师】这是上多媒体课的情景,每一个同学都有一个单独桌子,教室的前面 是一个控制台,控制台的左下方是一个座位表。如果哪个同学有问题要问老师,只要按一下秘书桌上的按钮,座位表上相应位置的红灯就会点亮,老师就知道谁要发言。

  【师】播放动画。这时,红灯亮了,是谁提问了呢?

  【生】(看课件中红灯亮的位置)是张亮在提问。

  【师】那同学们,你们想知道哪一位同学是张亮吗?那们就来找一找吧。

  这节课我们就一起来进一步学习“确定位置”。

  【板书】第二章 位置 第1节 确定位置

  2 探索新知

  [1]寻找张亮的位置

  【师】课件展示多媒体教室全景大图,请同学们仔细研究座位表和同学们座位间的关系,找一找哪一位同学是张亮。可以看教材19页,在教材上标出张亮同学的位置。

  【生】在教材上寻找张亮的位置。

  【师】说一说,你是怎么知道这就是张亮呢?

  【生】红灯亮的是第二列第三行,学生座位中第二列第行的就是张亮。

  [2]明确行列的.含义

  【师】张亮是在第二列第三行吗?

  【课件展示】同在数学上竖排叫“列”,横排叫“行”。 “列”习惯上从左往右数,依次为第1列、第2列…… “行”习惯上从前往后数,依次为第1行、第2行……

  【师】同学们,张亮是在第二列第三行吗?

  【生】是。

  【板书】(第2列、第3行)

  [3]认识数对

  【师】为了表示方便,表示位置我们还可以用“数对”来表示。括号中第一个数字表示列,第二个数字表示行,中间用逗号隔开。张亮在第2列、第3行的位置,可以用数对(2,3)表示。

  【师】根据描述的习惯,你认为括号里这两个数各表示什么?

  【生】括号里的第一个数表示第几列,第二个数表示第几行。

  【板书】(2,3)

  [4]用数对表示位置

  【师】你能用数对来表示王艳同学的位置吗?

  【生】王艳的位置用数对表示是(3,4)。

  【师】括号里的3和4表示什么呢?

  【生】3表示王艳在第三列,4表示在第四行。

  【师】你们能不能用数对表示赵雪的位置呢?

  【生】赵雪在第四列第三行,用数对表示是(4,3)。

  【师】括号里的4和3表示什么呢?

  【生】4表示赵雪在第四列,3表示在第三行。

  【师】赵雪的位置能用数对(3,4)表示吗?

  【生】不能,赵雪的位置在第四列第三行,而第三列第四行的位置是王艳。

  【师】看来,数对(3,4)和(4,3)不仅是数的顺序不同,它们表示的位置也不同,所以我们用数对表示位置的时候,一定要遵循规则,数对前面的数字表示——列,后面的数字表示——行。

  巩固练习:请同学们利用刚才所学的知识写一写孙芳,周明,李小冬的位置。

  指定一个学生上白板上写。

  [5]巩固确定位置的方法

  1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

  2、老师说数对,学生根据数对找出相应的同学。

  [6]巩固拓展

  【师】生活中还有很多用两个数来确定位置的情况,你知道有哪些吗?

  【生】举生活中用数对确定位置的例子。

  【课件展示】1、楼宇案例门上表示几层几号的按钮。

  2、电影院里的座位——几排几号

  3、象棋棋盘

  [7] 课堂练习

  1、用数对(3,2)表示。你能用数对表示其他几个图案的位置吗?

  参考答案:

  苹果用数对表示(4,3);西瓜用数对表示(2,1);香蕉用数对表示(4,1);樱桃用数对表示(2,3)。

  2、下图是国际象棋。

  (1)她是怎样确定棋子位置的?

  (2)你能像她那样说一说每个棋子的位置吗?

  参考答案:白方的“王”从左向右数在“e”列,从下往上数在“1”行,所以用数对表示为(e,1)。

  [8]课堂小结(PPT投影)

  【师】同学们,这节课我们学习了确定物体位置的方法,相信同学们一定大有收获,谁来说一下收获呢?

  【生】我学会了怎样用数对表示位置。

  我知道了数对中第一个数表示列,第二个数表示行。

  我知道竖排叫列,一般从左往右数,横排叫行,一般从前往后数。

  板书

  第二章 位置 第1节 确定位置

  (第2列、第3行)——(2,3)

  数对 (3,4)

  (4,3)

  列 行

  竖排叫列,一般从左往右数

  横排叫行,一般从前往后数

  《用数对确定位置》教学设计 9

  教学内容:

  新人教版五年级上册第19-21页的例1、例2及“做一做”和练习五的有关习题。

  教学目标:

  1、通过观察同学在班级的位置,引出列、行的概念。

  2、通过谈话交流,确定第几行、第几列的一般规则,学会用“数对”确定位置。

  3、结合具体情境,进一步体验用数对确定物体位置的必要性,能根据数对在方格纸上确定物体的位置。

  4、通过运用数对确定位置的方法解决实际问题,让学生体验数学与人类生活的密切联系,感受确定位置的丰富现实背景,体会数学的价值。

  重点:在具体的情境中用数对表示物体的位置。

  难点:在已有的学习经验的基础上将用列、行来表示提升为用数对来表示物体的位置。

  教学过程:

  一、谈话导入

  同学们,你们知道我们班上周的“每周一星”是谁吗?能说出她的位置吗?

  出示课题:确定位置

  二、探究新知

  1、认识第几列第几行。

  (1)课件演示列和行。

  (2)说说某个同学在第几列第几行。

  (3)游戏:请一位同学报第几列第几行的同学起立,答对的接着报下一个同学的位置,一直接力下去。尽量让更多的同学有锻炼的机会。(答错的请说出自己的正确位置。)

  2、学习用数对确定物体的位置。

  (1)比赛:老师报位置,如:第2列第3行,你们把老师报的位置记录下来,看谁能把老师报的位置全写下来。(老师报的速度可不慢哦)

  比赛结束,将记录比较多的同学展示给大家看,看看他们的.记录方法,并加以表扬。

  (2)课件演示用数对表示位置。

  请同学说说是如何表示的,它表示的是什么意思?继续用课件演示将具体是人物的位置抽象用“格子”或“点”来表示物体位置。

  (3)学生独立完成课本第20页例2。在格子图上用数对表示各个场馆所在的位置以及标出指定场馆的位置。

  (4)将错误的展示,请大家讲评。之后将正确的展示给大家看。

  三、巩固练习:

  课本第20页的“做一做”。

  《用数对确定位置》教学设计 10

  课题:

  第二单元:位置(在方格纸上用数对确定物体的位置)第课时总序第个教案

  课型:

  新授编写时间:

  教学内容:

  教材P20例2及练习五第3、4、6题。

  教学目标:

  知识与技能:

  理解方格纸上数对的含义。

  过程与方法

  结合方格纸用数对来确定物体的位置,能依据给定的数对在方格纸上确定位置。

  情感、态度与价值观:

  在确定位置的过程中,增强学生解决实际问题的能力,提高应用意识。

  教学重点:

  掌握在方格纸上用数对确定物体的位置。

  教学难点:

  正确描述物体所在的位置。

  教学方法:

  自主探索,合作交流。

  教学准备:

  师:多媒体。生:方格纸。

  教学过程

  一、情境引入

  1、复习:上节课学习了用数对来表示物体的位置,谁来说一说数对中的第一个数字表示什么,第二个数字表示什么?

  (数对中的第一个数字表示“列”,第二个数字表示“行”。)

  2、导入:(出示如下示意图)那么,今天我们继续来学可数对的知识,先来看下面的示意图,你们能用数对分别表示出各场馆的位置吗?

  熊猫馆

  大象馆海洋馆

  猴山

  大门

  引导学生用数对分别表示出各场馆所在的位置。

  指学生回答,并说一说是怎么确定它们的位置的。

  二、互动新授

  1、出示教材第20页“动物园示意图”。

  (1)引导学生观察图,并比较它和刚才的示意图有什么不同。

  引导学生理解图意:横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

  (2)提出问题:图上的数字表示什么?

  引导学生理解:纵向排列的数字表示行,从下往上数;横向排列的数字表示列,从左往右数。图上的数字表明行和列的起点均为o。

  (3)引导学生观察这幅方格图,问:你能用数对表示出大门的位置吗?

  指生回答:大门(3,o)。

  组织同桌互相说一说其他场馆的位置。

  小组互相交流、探讨,教师进行相应的指导。

  集体订正,并用多媒体出示各场馆的位置:

  大象馆(1,4)猴山(2,2)大门(3,o)熊猫馆(3,5)海洋馆(6,4)

  2、指生到黑板指一指下面场馆的位置:飞禽馆(1,1)、猩猩馆(o,3)、狮虎山(4,3)。

  并说说自己是怎样标出各个场馆的位置的。

  引导学生回答:飞禽馆(1,1)是在第一列第一行,猩猩馆是(1,3)在最左边一列第3行,狮虎山是(4,3)在第四列第三行。

  3、拓展延伸。

  (l)引导学生分别观察飞禽馆、大象馆以及猩猩馆和狮虎山在图中的位置和表示它们位置的数对,你有什么发现?

  引导学生说出:大象馆和飞禽馆在同一列,它们的数对第一个数相同;猩猩馆和狮虎山在同一行,它们的数对第二个数相同。

  师小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  (2)质疑:如果用(x,4)表示某场馆的位置,能确定在哪里吗?

  小组交流,并指生汇报。

  教师引导学生总结:由于字母表示的数不确定,所以这样的数对只能确定这个场馆在哪一条横线上,但不能确定这个场馆的.具体位置,使学生明确必须要有两个数才能确定一个位置。

  4、找生活中的数对。

  用数对表示位置在生活中有着广泛的应用,你能举出例子吗?

  小组讨论交流,如:地球仪上的经纬网、十字绣、围棋棋谱等。

  三、巩固拓展

  1、完成教材第20页“做一做”第1题。

  先让学生自主完成,然后再说一说你是怎么确定的。

  2、完成教材第20页“做一做”第2题。

  先把题目的要求读一读,自主完成,然后同桌互说。

  四、课堂小结

  师:同学们,这节课你们都学会了哪些知识?

  生1:我学会了在方格图上用数对表示位置。

  生2:我知道表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  作业:P21~22练习五第3、4、6题。

  板书设计:

  在方格纸上用数对确定物体的位置

  熊猫馆(3,5)海洋馆(6,4)

  猴山(2,2)大象馆(1,4)大门(3,o)

  表示同一列物体位置的数对,它们的第一个数相同;

  表示同一行物体位置的数对,它们的第二个数相同。

  《用数对确定位置》教学设计 11

  教材分析:

  《用数对确定位置》是北京版数学第七册第五单元《方向与位置》的第一课时。“用数对确定位置”这部分知识是在学生原有知识的基础上—“确定位置”进一步的学习和提升,是培养学生的空间观念,也是今后进一步学习相关知识——“图形与坐标”的重要基础。在学习本课之前,学生已经在第一学段学习了前后、上下、左右等物体具体位置的知识,这些知识为学生进一步认识物体在空间的具体位置打下了基础。本节课的学习则是第一学段学习内容的发展,学生已经具备一定的生活经验,因此学习从学生十分熟悉的座位图着手,通过说座位,引出第几列第几行的话题,接着再从第几列第几行抽象出数对的表示方法,这一从学生的经验中,逐步抽象出数学的表示方法,符合学生由具体到抽象、由特殊到一般的数学认知规律,对提高学生的空间观念,认识生活周围的环境,都有较大的作用。本节课内容是通过学习可以让学生在具体的情境中,进一步探索确定位置的方法,并能比较灵活的运用方法确定物体的位置。

  学情分析:

  四年级学生对空间与图形这方面知识已经有了初步的认识。这一年龄段的孩子直观形象能力较强,具备一定的观察、归纳、自主探究、合作学习的能力,能够通过体验、研究、类推等实践活动,概括出一些数学概念,掌握一些数学规律。但他们的逻辑思维能力和抽象的空间概念还没有完全建立,所以在教学这一内容时要根据学生的思维特点,密切联系学生的`生活实际,结合具体情境,引导学生经历知识的形成过程,让学生自主发现,探究并获取知识。另外,在日常生活中,根据需要按一定顺序排列是学生已有的经验。如:课间操站排、教室的座位等。但是用数对表示位置顺序,并在方格图上用数对确定位置,学生还是第一次接触,因此教学时,应从学生已有知识经验出发,创设现实情境,增加学生参与,体验的机会让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  教学内容:第一课时

  教学目标:

  1、能初步理解数对的含义,会用数对表示具体情境中物体的位置。

  2、结合具体情境,通过形式多样的确定位置的练习,让学生在探索知识的过程中发展空间观念,并增强其运用所学知识解决实际问题的能力

  3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学重点:学习用数对的形式描述物体的具体位置。

  教学难点:学习用数对的形式描述物体的具体位置。

  教学过程:

  一、谈话引入

  1、今天由杨老师给大家上节课,能告诉我你们是哪个班的吗?(三1班)

  2、是三年级1班,那为什么不老老实实告诉我“三年级1班”,而只说“三1班”呢?

  (这么说简单;说三1,人家也知道是三年级1班……)板书:简洁

  3、既然这样,那我觉得还能再简单点,人家问我哪班的,我就说1班,行不行?

  (不行,不知道是哪个年级的)那说三就行了吧?(不行,是三年级还是三班?)

  4、看来生活中,不能因为简洁而省略重要的字,还得注意准确。板书:准确

  二、合作探究

  (一)明确行、列

  1、其实数学也是这样。以前我们已经学过有关行和列的知识了,怎样叫一列?(竖着看,这一组也就是一列。)一行呢?(横着看,这一排也就是一行。)

  2、这是红星小学四3班同学的座位图,你能用行和列猜猜李红的位置吗?(生随便猜)怎么样?(太难了,这么多人……)

  3、那给点提示吧,李红在第4列。板书:第4列第4列在哪呢?(有人指着这边,有人指那边)数列时都从观察者的左边数起。现在,谁是观察者?(我们)哪是第一列?(指一指)依次出现列数

  4、现在你猜吧,李红在哪?(生猜)这回好猜吗?(还是不行,第4列有好几个女生呢)那怎么办?看来光说列还不能确定李红的位置,还得需要知道第几行。

  5、补充板书:第3行再来看看,李红在哪呢?(指一指)有不同意见吗?(我认为是这个女生呢。)那到底是哪一个?(从前往后数……)哪是前边?数行的时候,从离观察者最近的一行数起,图中就是从下往上数。依次出现行数。

  6、现在,能确定李红的位置了吗?她在哪?(从左边数第4列,从下边数第3行)看来,通过第几列第几行就能确定一个人的位置了。

  7、看图出示(课件)的同学,能说出他们的位置吗,老师板书。

  (二)认识数对

  1、学生一起说位置,老师板书。停,不能再写了,你们说得太快,我都跟不上你们的速度了,这么写太麻烦了,有没有更简洁明了的方法表示第几列第几行呢?

  2、以李红的位置“第4列第3行”为例,四人小组,看看能不能集中大家的智慧,创造出一种更简洁,同时也很准确的方法。别忘了,把研究出的方法,记录在纸上。如能找到不同的方法,都可以记录下来。(小组合作)

  3、投影展示,说说自己的想法。(①4列3行②43③4.3④4-3⑤↑4→3……)

  这些方法似乎都挺简洁,到底该选哪一种呢?还是请大家来作评判吧。(生自由评说)难道,刚才被批评的方法,一点值得肯定的地方都没有吗?(它们都比原来要简洁一些)这就是一种进步!不过,除了简洁,难道就没有别的什么共同的地方?(它们都有4和3这两个数)多善于观察!那剩下的几种方法呢?(也都有这两个数)既然每一个小组都不约而同地保留了这两个数,说明?(这两个数很重要,缺一不可)

  4、4表示?3表示?没有了这两个数就不能表示第4列第3行了。

  大家真是了不起!想到了可以用两个数分别表示“列”和“行”来确定位置。其实,你们的方法已经很接近数学家的方法了,他们也是用两个数来确定位置,只不过是用 “,”把两个数隔开,再加上小括号。板书:(4,3)这种表示方法叫数对。

  读的时候要读“谁的位置是数对四三”,他表示的意思是“第4列第3行”。

  5、你知道黑板上的这几个位置怎样用数对表示了吗?在你的纸上写一写。

  (指名几人板书,写出位置所在的名字和数对,反馈订正。)

  6、现在,站在老师的角度观察能说说你在咱们班里的位置吗?哪是第一列第一行?

  亲自找一人上前来指一指哪是第一列哪是第一行。(其他人也可上前来)

  (1)用数对表示自己的位置。

  (2)看来,自我介绍并不难。能用这样的方式介绍一下你最好的朋友吗?让我猜猜他是谁?

  (我的好朋友的位置是数对(5,3))

  让我也来认识一下你的朋友,第5行,第3列。认识你很高兴。

  (质疑:不对,我说的是……,您说的是……,不是一个人)

  不都是5和3这两个数吗?怎么不对了?

  (5表示第5列,3表示第3行,先说列,再说行,不能前后颠倒……)

  看来,只剩下数字时,必须规定先说什么后说什么,否则就乱了。用数对表示位置时,先说第几列后说第几行。

  (3)让我重新认识你的好朋友,是这个同学吧,真高兴认识你。

  (三)认识网格图

  1、如果把咱们班每个座位都看成是行和列相交的点,这些点用线连起来,我们的座位图会变成什么样呢?出示网格图

  2、哪是第一列第一行?指出,依次出现。你手中也有一张这样的网格图,找到哪是列,哪是行。标注,快在网格图上找到你的位置,描出点,投影展示位置,大家猜是谁。

  3、在网格纸上根据数对找到以下几名同学的位置,描点。(3,1)(3,2)(3,3)(3,4)(3,5)

  你有什么发现?(都是同一列同学,数对中第一个数字都相同)

  那数对中第2个数字相同呢?(表示同一行同学)

  比如,出示(6,1)(5,1)(4,1)(3,1)(2,1)(1,1)图,谈发现。

  4、《分层测试卡》基本练习:分成测试卡第54页第2题;巩固练习:分层测试卡第55页第1题

  三、生活中的应用

  1、北京奥运会上的击缶而歌,如果某一个人的动作需要改进,怎样快速找到他的位置呢?就可以用第几列、第几行的方法快速确定位置。

  2、象棋、围棋的棋盘,要想描述某一个棋子的位置,可以用数对的形式。

  3、航天飞机和地球经纬线看,数学其实就在我们身边,只要认真观察就会发现很多知识。

  四、总结收获

  1、翻牌游戏

  2、谈谈这节课的收获。

  《用数对确定位置》教学设计 12

  教学内容:

  教材P19例1及练习五第1、2题。

  教学目标:

  知识与技能:

  使学生在具体的情境中认识“列”与“行”的含义,知道确定第几行、第几列的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  过程与方法:

  使学生体验数学与生活的密切联系,进一步提高用数学的眼光观察生活的意识。

  情感、态度与价值观:

  培养学生的空间意识和能力,进一步培养数感。

  教学重点:

  会用数对确定物体的位置。

  教学难点:

  正确区分“列”和“行”的顺序。

  教学方法:

  自主探索,合作交流。

  教学准备:

  多媒体。

  教学过程

  一、情境引入

  1、导入:同学们,你们想不想知道其他班级上课的情境是什么样的呢?今天咱们就去五年级某班看一看。看,这是张亮班级里的学生,多整齐!你能告诉老师张亮的位置吗?

  (出示教材第19页情境图中张亮那一列同学的'座位)

  学生可能说:第3个、从前面数第3个、从后面数第3个等。

  教师引导学生分析,要在一列座位中确定一个人的位置只要说清数方向和第几个就行了。

  2、揭题:今天我们就来学习如何用数对来表示物体的位置。

  (板书课题:用数对确定物体的位置)

  二、互动新授

  (一)明确行、列的意义

  1、师引导:这么多表示方法有些乱,同学们所说的“排”,在数学上竖排叫“列”,横排叫“行”。(板书:列行)

  并明确:数“列”的时候习惯上从左往右数,依次为第1列、第2列……数“行”的时候习惯上从前往后数,依次为第1行、第2行……把教材第19页情境图上的每一列和每一行按顺序写上,同桌互相指一指。

  说明:通常情况下,描述物体位置时先说列,再说行。

  让学生用正确的方法描述张亮的位置。(第2列、第3行)

  2、引导:你能用刚学习的知识描述一下其他同学的位置吗?(举例王艳、赵雪,周明位置等)

  让学生随便指图上一人,同桌互相说一说他的位置。(学生练习)

  (二)认识数对

  1、引导:表示位置我们还可以用“数对”来表示。这就是今天我们要学习的主要内容:用数对确定位置。张亮在第2列、第3行的`位置,可以用数对(2,3)表示。

  2、质疑:根据描述的习惯,你认为括号里这两个数各表示什么?

  (第一个数表示第几列,第二个数表示第几行。)

  强调并让学生明确数对的第一个数表示第几列,第二个数表示第几行。

  (三)用数对表示位置,根据数对确定位置

  1、让学生用数对分别表示图中其他同学的位置。(王艳、赵雪等)

  学生回答:王艳的位置用数对表示是(3,4),赵雪的位置用数对表示是(4,3)。

  2、讨论我们用数对表示物体位置时要注意什么问题?

  (不要把列和行弄颠倒了。)

  (四)应用知识

  1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

  2、你能用数对表示你的前后左右邻居吗?说一说,并思考有什么发现。

  (1)让学生互相说一说,并讨论。

  (2)引导学生明确:前后邻居数对的第一个数与自己相同,左右邻居数对的第二个数与自己相同。

  3、做游戏:教师说数对,学生根据数对找出相应的同学。

  4、找数对:大家来找一找生活中的数对。

  学生自由发言,指名学生说一说,如找座位,找楼座等。

  三、巩固拓展

  完成教材第19页“做一做”。

  先让学生分组讨论,然后再说一说。

  四、课堂小结

  师:同学们,这节课你们都学会了哪些知识?

  生1:我学会了怎样用数对表示位置。

  生2:我知道了数对中第一个数表示列,第二个数表示行。

  师:除了以上两位同学所说的之外,在用数对表示物体的位置时还要注意,列是从左往右数,行是从前往后数。

  布置作业:

  板书设计

  用数对确定物体的位置

  竖排一列左一右

  横排一行前一后

  数对(列,行)

  《用数对确定位置》教学设计 13

  一、说教材

  1.教材内容

  《用数对确定位置》是苏教版小学数学四年级下册第八单元P98——100的教学内容。

  2.教材分析

  本课安排的是用从生活中的电影院中位置的确定来引入数对的方法。教材呈现的例题是小军在教室的位置的问题情境,“用数对确定位置”是在第一学段已经学了上下、前后、左右以及第几排第几个的基础上进行学习的,是第一段学习内容的延续和发展。让学生用抽象的数对来表示位置,进一步发展学生空间观念,提高抽象思维能力,为今后进一步学习“图形与坐标”打下重要基础。

  3.教学目标

  我是从知识与技能、过程与方法、情感、态度与价值观三个方面来设计本节课的教学目标

  (1)、知识与技能:使学生在具体情境中认识列、行的含义,知道确定第几列第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  (2)、过程与方法:使学生经历由具体的座位图到用列、行表示的平面图的抽象过程,进一步发展空间观念。

  (3)、情感态度与价值观:使学生感受用数对表示位置的简洁性,体验数学与生活的密切联系,进一步增强用数学眼光观察生活的意识。

  4.教学重、难点

  从学生的知识结构和年龄特征出发,我理解本课的

  教学重点:初步理解并掌握用数对表示位置的方法。

  教学难点:能正确使用数对表示具体情境中物体的位置。

  二、说教法、学法

  1.教法:

  本课时主要采用“探究式教学法”,辅以“情境教学法”进行教学。教学中,从生活中常见的电影院导入新课,借助找位置的实际问题,让学生逐步形成如何去确定位置,再让他们小组交流,从中巩固新知,学会写数对,从而发展学生的数学技能。

  2.学法:

  学生作为主体,在学习过程中的学生的参与状态和参与度是决定学习效果的重要因素。因此在学法的选择上体现出“玩中学——学中玩——在合作交流中学——学后交流合作”的思想。

  三、说教学过程

  教学过程:

  (一)、导入

  提问:《题西林壁》这首诗学过吗?为什么诗人不识庐山真面目?

  指出:观察物体角度很重要。中国有句俗话“当局者迷,旁观者清”,就是告诉我们要以旁观者、局外人的视角观察人、事、物,才能更准确。

  (出示电影院的座位图)提问:同学们,你们去看过电影吗?这是电影院一个厅的平面图,竖着的一排叫什么?横着的一排呢?(板书:竖排叫列,横排叫行)

  老师想要观察这个厅所有的观众,应该站在什么位置?(银幕的位置)

  指出:会选角度观察,我们今天的课就成功了一半。下面就进入我们的数学之旅吧!

  (二)、认识数对

  1、游戏——寻找幸运观众

  (1)给出任务:电影院今天搞活动准备在这个电影院里选择三位观众免费观看,已找出两位,剩下的一位,让学生自己寻找。

  (2)寻找幸运观众

  第一步:漫无目的寻找。

  第二步:根据提示寻找。教师给出提示(3,2),学生根据提示指一指幸运观众可能在的位置,教师用投影显示8个可能的位置。

  第三步:根据视角寻找。进一步缩小范围,点击鼠标,寻找出幸运观众。

  提问:为什么一个提示出示8种可能?(不知道哪个数据表示行或列,也不知道是从哪边开始数起的),你认为观察者在哪?根据观察者的视角和(3,2),你认为可能在哪?

  (3)理解数对的含义。

  提问:(3,2)表示什么意思?(板书:第3列,第2行)列是从观察者的哪边开始数起?行呢?(板书:从左往右从前往后)

  指出:像这样用一组数表示物体位置的方法就是我们今天研究的内容。(板书课题:用数对表示物体位置)

  提问:你觉得用数对表示物体的位置有什么好处?(简洁)能不能将逗号省去?能不能将()省去?(逗号将列和行分开,括号是数对的特征)

  (4)运用数对

  用数对表示出前2位幸运观众的位置。用数对表示自己的位置

  提问:以谁的视角来观察,哪边是第一列?(选5个同学,其他同学用手势表示正误,)

  提问:比较一下,你和你的同桌写出的数对有什么相同点?为什么?

  (三)、用数对确定位置

  1、★出示“小军班上的座位表”。(表略)

  师:你能说出小军的位置吗?

  生:小军在第4列第3行

  小结:一起数在第四列,第三行。用数对表示,小军的位置是(4,3)。

  2、★师:如果我们把每个同学的位置看成一个圈,就成了这样的图形。

  (多媒体显示,把刚才的图片抽象化,每个同学只用一个圈表示)

  师:小军在班上的好朋友小林坐在教室的这个位置,你能用数对表示出小林的`位置吗?谁来说一说师:这些实际上是我们数学教学用书上的,实际上我们生活中也有很多关于数对的问题

  (四)、巩固练习

  1、课件出示练习三第2题:

  (1)小明家刚买了新房子,正在装修,这是他家厨房一面墙上的瓷砖,请用数对表示四块装饰瓷砖的位置。

  (2)各自在书上填写后指名汇报,全班交流。

  (3)讨论:你发现表示这两块瓷砖位置的数对有什么特点吗?(注:两块出示后讨论,再出示第3块讨论)

  在同一列的瓷砖,数对中的第一个数相同在同一行的瓷砖数对中的第二个数相同

  2、课件出示练习三第3题

  学校要举办艺术节,准备放置一些花来装饰一下我们的校园,我们一起去看看吧。

  (1)写数对:能用数对表示出这些盆花的位置吗?各自在书本上填写后指名汇报,全班交流。

  (2)找规律:观察这些盆花的位置,你发现了什么?先让学生在小组中说说自己的发现,再组织全班交流

  3、学习了这么长时间,同学们也有点累了,我们一起来玩个找字的游戏,好吗?

  出示题目以及游戏规则,玩四次。指名交流思考题,安排位子

  你知道吗,介绍笛卡尔如何想到数对。

  拓展延伸,拓展到三维的角度

  (五)、全课总结

  这节课大家学习的很棒,摩斯侦探想再考考大家,你们有信心用今天学习的数对的知识找出摩斯密码下的秘密吗?下课了。

  四、说板书设计

  板书主要就是从问题想起的策略的一个思考过程,比较清晰,简单,能突出说出这节课的重点

  用数对确定位置

  竖排叫列从前往后数对。

  横排叫行从左往右(4,3)

  五、总结

  以上是我对本课教材教学以及教学方法的预设。基于对本课的设计理解,我认为我们应从数学思考、数学意识的层次上解读用数对确定位置,而不能将此类课型简单地的教学。

  学生从生活实际慢慢的到需要引入数对来确定位置,比较自然,学生在学习时也是一个循序渐进的过程。

  《用数对确定位置》教学设计 14

  教材分析

  本节内容是在第一学段的位置学习的基础上,使学生“能用数对表示具体情境中物体的位置”,进一步提升学生的已有经验,培养学生的空间观念,为第三段学习“图形与坐标”打下基础。

  学 情 分析

  学生在一年级下册已学会了用第几组第几个确定物体的位置,并在四年级下册位置与方向学习中掌握了位置与方向的描述和根据描述标出物体位置的方法,生活中部分学生已经具备了用行和列(或者排等)描述学生座位的经验,虽然他们所说的第几行或者第几列都是根据自己的习惯随意确定的标准,没有统一的规定,但是这些经验却是学习本课的内容的重要铺垫,这些经验有助于孩子们对数学化地描述物体的位置的方法理解。

  教学目标

  1 .能在具体情境中用行和列的确定位置,初步理解数对的意义,并能用数对表示具体情境中物体的位置,也能在方格纸上用数对确定物体的位置。

  2.引导学生经历从文字描述到用数对表示物体位置及由实物图到方格图的创造过程,体验用数对确定位置的优越性,渗透数形结合和一一对应的思想,发展空间观念。

  3.感受数学与生活的联系及学习(创造)数学的乐趣,进一步增强用数学的方法观察生活和解决生活问题的意识。

  教学重点 :初步理解数对的含义,掌握用数对确定物体位置方法。

  教学难点 :能在方格纸上用数对确定物体的位置。

  教学准备 :多媒体课件

  本课 重点环节设计意图说明:

  1.把书上的主题图改成自己班级的座位图,目的'既为激发学生兴趣,也想体现数学来源于生活 。

  2.让学生按照自己的想法描述班长的位置,旨在激活学生头脑中已有的生活经验和知识基础,这是有效学习的基础。通过交流、谈感受,是学生认识到:多种不同的说法不便于交流,从而产生统一说法的需求,体会学习新知识的必要性。在这样的状态下揭示课题能够激发学生的求知欲望、集中学生的注意力。尽管不是所有的学生都能想到用“列”和“行”来说明一个人的位置,但是,对于这两个词学生并不陌生,也不难理解,所以让他们自己尝试解释“列”和“行”就是希望实现“学生对自己生活经验中数学现象的解读与提升”,同时也让学生经历一个完整的从生活到数学的思考过程。

  3. 在确定哪边是第一列时学生出现分歧,有的从左数,有的从右数。师再一次借助学生生活经验创造认知冲突,引导学生自发意识到统一规定的必要性,再一次体会数学来源于生活的需要,再一次经历数学化过程。

  4. 让学生自己独立创造更简单的表示方法,就是为了给学生提供一个发挥自己聪明才智的机会,让他们经历从文字描述到符号表示的数学化过程,在培养学生的符号意识和创新意识的同时也让他们感受到数对的优越性和数学的简洁美;在展示个性化思维方式的基础上进行的互动式点评,主要是想让他们学会取人之长补己之短,实现思维共享。

  5.在让学生用数对表示可儿位置的时候, 教师为学生刻意提供反例,一方面为了突出“规定数对书写顺序”的必要性,另一方面也能够让学生初步感知到:一个数对对应着一个位置,一个位置只能写出一个数对,渗透“一一对应”的思想。

  6. 游戏的安排既为了及时消除学生的心理疲劳,继续保持积极的学习热情,也为了让学生从数学回到生活,真实感知数对的生活化,并能够在游戏中发现规律,加深对“用数对确定位置”这一新知识的理解。游戏中设计的几个问题是想让学生观察到:一个人变成了一列人,一列人又变成了一个个人。通过这样的变化使学生清楚地发现:

  ① 通过不完整的数对(4,x)使学生感受到数对是两个数,两个数缺一不可,只有一个数不能确定一个具体位置。

  ② 一个数对只能表示一个位置,一个位置只对应着一个数对,再一次感受“一一对应”。

  ③ 表示位置在同一列(或者同一行)上的数对,第一个数(第二个数)相同,反之亦然,渗透“数形结合”的思想。

  7. “能在方格纸上用数对确定物体的位置”是本节课的教学难点,为了突破这个难点,我对教材的安排做了简单的调整:即,把格子图寓于座位图中,让学生借助已经初步具有的符号意识和教师的提示(比如这一列可以怎么画呢),把座位图简化成格子图。通过这样的独立创造,让他们再一次经历从直观座位图抽象出方格图的数学化过程,进一步建立符号意识,体会数学的简洁美。教师不失时机地利用课件动态呈现从座位图演变成格子图的完整过程,目的是让学生通过观察发现:列线和行线的交点就是学生的位置,看懂了这一点,就看懂了格子图,这正是突破难点的关键。

  8. 拓展“鸟馆”旨在打破学生的认知平衡,这样既可以引导学生将方格图向上下左右延伸,培养空间想象力,又能和中学要学习的坐标系建立联系,进而拓展学生的思维。

  9. 把课本中的练习题进行发挥使用,是想让学生经历发现问题、提出问题、分析问题、解决问题的完整过程,培养学生学以致用的意识。进一步感受数对确定位置的实用价值,并在应用学过的知识解决生活问题的过程中获得成功的体验。

  10. 课堂总结一方面引导学生梳理本课知识点,让学生进一步感受数学思考的价值;另一方面通过教师设疑引导学生建构从一维到二维再到三维的知识链,并把学生的思考延伸到课后。

  现在回顾这节课,还是觉得练习设计比较少,其实这个问题在备课时就想到,比如课后关于数形结合的根据数对涂一涂的练习,还有生活中的知识拓展,地球上的经度维度问题,以及想介绍创立坐标系的法国数学家勒内·笛卡尔的相关信息,顺便渗透数学文化,但是考虑到时间的问题,而且这节课我更多关注学生的学习创造过程,给孩子充分的空间让他们自己试着设计数对,其实这也是我从教这么多年来比较困惑的地方,到底是该更多关注学生学习的过程还是结果,也是这里我想和大家交流探讨的地方,希望能得到各位专家和同仁的帮助,谢谢大家!

  《用数对确定位置》教学设计 15

  一、教学目标

  知识目标:

  结合具体情境认识行与列,理解确定第几列、第几行的规则。

  初步理解数对的含义,并能用数对表示具体情境中的位置。

  能力目标:

  经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  增强学生的运用所学知识解决实际问题的能力。

  情感目标:

  体验数学与生活的密切联系,拓宽知识视野,体会数学的价值。

  增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

  二、教学重点与难点

  教学重点:理解数对的意义及表示方法。

  教学难点:正确地用数对描述物体的具体位置。

  三、教学过程

  创设情境,引发冲突:

  通过展示教室座位图或类似的情境图,引导学生尝试描述某个同学的位置。

  由于学生可能采用不同的描述方式(如从左往右或从右往左数),导致描述结果不一致,从而引发认知冲突。

  引出课题:确定位置的方法需要统一和简化。

  认识列与行:

  介绍列和行的概念,明确竖排为列,横排为行。

  引导学生确定第一列和第一行的位置,并依次数出其他列和行。

  通过具体情境图或多媒体动画展示,帮助学生理解列和行的含义。

  学习用数对表示位置:

  引导学生尝试用两个数来表示某个同学的位置,如(4,3)表示第4列第3行。

  介绍数对的写法:两个数之间用逗号隔开,外面加上小括号。

  强调数对中第一个数表示列,第二个数表示行,顺序不能颠倒。

  通过练习,让学生熟练掌握用数对表示位置的方法。

  巩固应用,拓展延伸:

  引导学生用数对表示自己在教室中的位置,并找出同行或同列的同学的数对。

  设计形式多样的练习题,如瓷砖图、国际象棋棋盘等,让学生用数对表示不同物体的`位置。

  引导学生观察和分析数对中的规律,如同行或同列的数对的特征。

  总结全课,内化知识:

  回顾本节课所学内容,强调数对在确定位置中的应用价值。

  引导学生分享自己的学习体会和收获。

  讲述数学家笛卡尔发明数对的故事,激发学生的数学兴趣和探索精神。

  四、教学准备

  多媒体设备、PPT课件、学习单等教学辅助工具。

  教室座位图或情境图等教学材料。

  五、板书设计

  板书课题:用数对确定位置。

  列出列和行的概念及确定方法。

  展示用数对表示位置的示例和写法。

  呈现学生练习和讨论的结果。

  《用数对确定位置》教学设计 16

  教学目标:

  本节课旨在使学生理解并掌握数对的概念,学会用数对准确描述二维平面中的位置,培养学生的空间想象能力和逻辑思维能力。通过生活实例的引入,激发学生对数学的兴趣,培养学生用数学眼光观察生活的习惯。

  教学重难点:

  重点:理解数对的含义,掌握用数对表示位置的方法。

  难点:正确识别和应用数对,解决生活中的实际问题。

  教学过程:

  导入新课(约5分钟):

  借助教室座位图,提问:“如何快速准确地指出某同学的位置?”引导学生发现现有方法的不足,引出数对概念。

  新知讲授(约15分钟):

  介绍列与行的概念,明确列从左至右,行从前至后。

  演示如何用数对(列,行)表示位置,如(3,4)表示第3列第4行的位置。

  强调数对书写的规范性,即逗号分隔,括号包围。

  实践操作(约15分钟):

  让学生在纸上画出简易座位图,用数对标记自己的位置。

  分组活动,每组随机报出一个数对,其他成员迅速指出对应位置。

  变换情境,如电影院座位、棋盘格子等,练习用数对表示不同情境下的位置。

  巩固提升(约10分钟):

  设计一系列练习题,包括根据数对找位置、根据位置写数对等,检验学生对数对概念的掌握情况。

  引导学生总结数对应用的规律,如同行或同列数对的特点。

  课堂小结(约5分钟):

  回顾本节课学习的内容,强调数对在确定位置中的重要性。

  鼓励学生分享学习心得,提出疑惑。

  教学资源:

  教室座位图、电影院座位图、棋盘格子图等教学辅助材料。

  PPT课件,用于展示数对概念、例题和练习题。

  教学反思:

  本节课通过生活实例引入,有效激发了学生的学习兴趣。实践操作环节增强了学生的.动手能力,巩固了新知。但需注意,在巩固提升阶段,应增加更多与生活紧密相关的练习题,以进一步提升学生的应用能力和解决问题的能力。同时,对于部分学生在数对应用上的混淆,需加强个别指导,确保每位学生都能熟练掌握数对的使用方法。

《《用数对确定位置》教学设计(通用16篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深写手 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【《用数对确定位置》教学设计】相关文章:

《确定位置》教学设计04-08

“确定位置”教学设计04-19

确定位置教学设计12-12

确定位置教学设计01-20

《用数对确定位置》的评课稿[精选]11-23

《用数对确定位置》评课稿03-21

《用数对确定位置》的评课稿03-24

《用数对确定位置》评课稿(精选)07-14

《用数对确定位置》的评课稿07-06

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

《用数对确定位置》教学设计(通用16篇)

  作为一名默默奉献的教育工作者,总归要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计要怎么写呢?下面是小编收集整理的《用数对确定位置》教学设计,仅供参考,大家一起来看看吧。

《用数对确定位置》教学设计(通用16篇)

  《用数对确定位置》教学设计 1

  教学目标:

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学重点:

  会正确用数对表示具体的位置。

  教学难点:

  培养学生的空间观念。

  教学准备:

  每位学生准备红、绿两支水彩笔;练习纸一张。多媒体课件。

  教学过程:

  一、情境引入,激发需要

  提问:能说出我们班中队长坐在哪里吗?

  出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)

  质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)

  提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)

  提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)

  揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。板书:确定位置

  二、认识列、行和数对

  1、认识列、行的含义

  师:你的座位在整个会场中还可以用第几列第几行来表示

  板书列行

  师:在你的理解中,什么叫“列”?什么叫“行”?请你比划一下。

  板书:竖排为列横排为行

  电脑显示座位中的列、行

  2、统一定位

  (1)请3位学生上台凭票指出自己找到的位置。并简述是怎样找到的?

  师:个别同学有异议吗?

  情况一:都能正确找到位置。

  师:他们在找座位时有哪些相同的方法步骤?

  (发现他们在数列与行的时候,都很有序。先找列,再找行;确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。)

  情况二:两人找到了同一个座位。

  在矛盾中引出:由于同学们看的方法和角度不同,所以在找位置时,产生了不同的说法,看来得统一定位。确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。请刚才有争议的同学重新找到自己的座位。

  (2)教师指座位,学生口答。

  第1列第1行、第5列第7行

  第11列第7行、第2列第10行

  3、用数对表示位置

  (1)提炼数对

  师:在教室后面坐着几位老师,请你用既准确、又简洁的方法,把老师的位置记录下来。

  反馈:把学生的记录方法一一呈现在黑板上,作为进行比较的素材

  可能出现:a全部用文字b第2列第3行c(2,3)

  52(5,2)

  47(4,7)

  师:这几种的记录方法,有什么相同的地方?(相同点,都是用两个数分别表示列和行。)

  师:这几种方法,你喜欢哪一种?为什么?

  师:大家的方法已经很接近和数学家的方法。数学上用两个数分别表示列和行,中间用逗号隔开,再用小括号把两个数括起来,就叫做数对。

  (2)读法和意义

  读一读数对(2,3)

  数对(2,3)表示什么?这两个数(2,3)分别表示什么?

  (3)完整书写课题

  师:用有顺序的两个数表示平面中的位置,就是今天我们的学习内容。(板书完整课题:用数对确定位置)

  (4)数对的作用

  师:认识了数对,充分让我们体验到数学表达的简约之美。请用数对说说你现在的位置?同桌交流。小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

  三、用数对表示平面图上点的位置。

  1、动物园示意图

  (1)质疑,引入列行标准

  师:这是动物园的示意图,动物园内的大象馆、猴山、海洋馆等不规则地分布着,说说动物园大门的位置?(列行不明,难以描述)

  可用一定大小的方格来统一距离,那些分散的场馆就好似方格中的点了。

  (2)观察起点的位置

  方格中的0表示什么?(既是列的开始,也是行的开始;同时也指示了列从左往右,行从上往下。)

  (3)大门的位置用数对(3,0)表示。

  (4)数对表示大象馆和海洋馆的位置。

  表示第几列,第几行?你是怎样看的?

  (5)学生独立完成

  a、熊猫馆的位置在第()列第()行,用数对表示为(3,5)。

  b、海洋馆的位置在第()列第()行,用数对表示为(5,3)。c、在图上标出下列场馆的`位置。

  飞禽馆(0,1)大象馆(0,4)猴山(3,3)

  (6)观察,讨论,深化数对的意义。同时向学生渗透坐标思想。

  选择其中的两个位置进行比较,你发现什么?

  发现一:数对(3,5)和(5,3),同样的两个数写的位置不同,实际的位置不同,因此在写数对时要按照规定先列再行。

  发现二:猴山和海洋馆都在同一行上,因此第2个数都相同。

  师:这一行上还有许多点,它们都可表示(几,3)列数不确定而行数确定,你能用一个数对来概括这一行上的所有点的位置吗?

  发现三:熊猫馆(3,5)和猴山(3,3),数对中的第一个数相同,它们都在同一列上。用(3,y)可以表示这列上所有点的位置。

  四、应用数对,创作图形。培养观察比较,空间想象能力。

  1.根据顶点的数对,在方格中画出三角形。

  (1)想一想

  观察顶点的数对a(1,1)b(3,1)c(1,3),想象这是个什么图形?

  (2)画一画

  根据顶点的数对,在方格中画出这个三角形。

  (3)移一移

  画出这个三角形向上平移5个单位后的图形。说一说又是什么三角形?

  2.根据顶点的数对,在方格中定点连线,找规律(1)根据数对在图上描出各点,标上字母,并顺次连接a、b、c、d。

  a(1,9)b(2,8)c(3,7)d(4,6)

  (2)比较这些数对,你有什么发现?

  列变化,行也随之变化;但列与行的和是不变的。当列和行的和是10时,连接各点是一条线段。如果把这条线段的两端延长,想一想,还有哪些点也一定在这条斜线上?

  五、总结、延伸。

  1、师:今天这节课学了什么?你对数对都了解了哪些?

  2、在直线上确定一个点,只要一个数据;

  在平面上确定一个点,需要两个数据,就是今天我们学的数对;

  在三维空间里确定一个点,也需要数据,需要几个数据?

  《用数对确定位置》教学设计 2

  教学目标

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、揭示课题,对比引入

  谈话:今天这节课,我们学习有关确定位置的知识。(板书课题:用数对确定位置)

  出示一排座位图,提问:谁知道小明的位置在哪里?

  出示三排座位图,提问:现在小明的位置在哪里?(第1排第3个)

  讨论:同样是小明的位置,为什么我们的描述方法却发生了变化呢?

  [设计意图:通过引导学生进行对比,让其感受到从一维到二维空间的过渡,拓展学生的空间观念。]

  二、设置冲突,引发需要

  1.激活经验。

  谈话:我们每个人在教室里都有自己的位置,班长坐在哪里?同学们不用手指,能告诉听课的老师吗?

  学生可能回答:第×排第×个,第×组第×个,第×行左边×个,第×列第×个……(教师相应板书)

  2.认识列。

  提问:看黑板上这么多种说法,你有什么感觉?(太乱了,不统一)为了便于交流,需要把表述方法统一一下。我们把竖着排的叫做列。(板书:列)

  屏幕出示坐次图,从左往右依次是第一列、第二列……(课件依次标出座位图上的列数)

  提问:屏幕上的座位哪里是第一列?列数应该从哪边往哪边数?(从左往右数)列从左往右数,是从谁的角度看的呢?

  要求:谁能上来指一指我们教室中的第一列。(学生上台指)先想一想自己的位置在第几列,老师叫到第几列,请相应同学起立。

  3.认识行。

  谈话:竖排叫做列,横排叫做──行。(板书:行)确定第几行一般是从前往后数的。(板书:从前往后数)

  提问:这幅图上第1行在哪里?第3行呢?这里一共有几行?(课件依次在座位图上的行数)

  [设计意图:自由表示班长的位置,让学生感受标准不一所带来的麻烦,引出统一标准的必要性,从而明确列与行的表述方法。通过有意识的引导,消除可能由于观察角度而引发的对列的错误理解。]

  4.引发需要,探寻方法。

  提问:现在能用列和行说说班长的位置吗?(学生可能说:第几列第几行,第几行第几列,教师相应板书)

  课件将座位图改为圆圈图,谈话:我们用圆圈表示每一个同学,请大家用笔记录红色圆圈表示的位置。(快速出示几个表示学生位置的红点,学生来不及记录)

  设问:是老师的速度太快了,还是你们的记录方法不够简捷呢?怎样才能又快又准地记下每个同学的位置呢?同学们要不要再试一次?

  反馈:小军的位置你是怎么记的?(学生的记法可能是:4列3行;3行4列;4,3;3,4;3—4;4—3;……)

  提问:你喜欢哪一种方法,为什么?

  讲解:其实,数学上专门有一种用来确定位置的简捷方法,请将书翻到第15页,看看课本上是怎么表示的?板书:(4,3)。

  提问:书上也是用两个数表示位置,跟我们的写法有什么不同?这样写有一个名称叫数对。(板书:数对)

  提问:数对中的两个数各表示什么呢?你觉得这样规定有什么好处?用数对表示位置要注意什么?

  谈话:这个数对就表示小军的位置,读作“数对四三”。其他几个同学的位置,你会用数对表示吗?

  学生用数对表示小红、小芳、小华的位置。[设计意图:引入数对直接告诉学生也未尝不可,但数对产生的背景及必要性却不能为学生所感受。这里,让学生经历快速记录和优化的`过程,从而逼近数对简约、凝练的特质,催生出数对的雏形。这一过程是逐步“数学化”的过程。]

  5.体验唯一 ,加深理解。

  谈话:想一想,你在教室里的位置用数对怎么表示?写在纸上,和你的同桌比较一下,再和你前后的同学比较一下,你有什么发现?

  (1)起立练习。

  依次出示(1,5)(4,2)(6,5)(2,2)(8,3),请这些位置上的同学站起来大声说出自己的位置。

  (2)出示(3,5)、(5,3),学生起立。

  提问:这两个数对有什么相同点?(都由数字3、5组成)有什么不同点?(两个数字3、5组成顺序不一样,表示的位置也不一样)

  (3)依次出示(4,x)、(y,5)、(x,y),学生起立。

  指起立的学生,提问:你为什么起立?是怎么想的?

  [设计意图:当学生初步认识数对后,通过找同一列、同一行学生的位置,让学生初步感悟用数对确定位置的规律。接着安排了写数对、找数对等分层变式练习:任意数对、两个数字相同的数对、颠倒数字位置的两个数对,含有字母的数对,帮助学生进一步理解数对中各个数的意义。此环节层层递进,逐步渗透,以螺旋上升的方式解决了这节课的教学重点。]

  三、理解应用,发展思维

  1.抽象坐标。

  谈话:如果我们用线把这些圆点连起来,再把列和行的起点定为“0”,就可以变成一个方格图(课件动态呈现),它和刚才的圆点图相比更加简单清楚,这样的方格图也叫坐标系,我们到中学会慢慢研究它。在这个方格图上,小强的位置怎么表示?小丽和小刚的位置呢?(学生口答)

  [设计意图:张景中院士曾经说过:“小学生学的是很初等的数学,但是编教材和教学研究要有高观点。”本节课的内容不仅仅是简单地用数对表示位置,更应该建立和初中数学的联系。利用课件演示“实物图——点阵图——方格图—坐标系”的逐渐抽象过程,引导学生初步感悟平面直角坐标系,培养学生的空间观念。]

  2.渗透思想。

  出示:(1,5)、(3,3)、(4,2)。

  谈话:请同学们在方格图中描出下面的点,把这三个点用线连起来,你发现了什么?(形成一条直线)

  启发:不看图形,就看这些数对,你发现它们有什么特征?(行数与列数相加等于6)

  出示:(2,4)、(2,3)。

  提问:下面的两个数对,哪个会在这条直线上?

  谈话:再把这条直线向上平移两格,4个点的位置现在用什么数对表示?你发现了什么?(行数减少了2,列数不变)想一想,如果把这条直线再向右平移两格,各个数对会发生什么变化?(列数增加2,行数不变)

  指出:图形的特征会反映在数对上,数对的特征也会表现在图形中。

  [设计意图:这个环节渗透了数形结合的思想。用代数的方法研究图形,是笛卡尔解析几何思想的精髓。]

  3.理解应用。

  谈话:去年在上海我国承办了第41届世博会。下面我们来看看世博园的园区图(不提供数对),你能用数对表示这4个馆的位置吗?如果给你提供一个数对(标出希腊馆的数对),你能根据希腊馆的位置,写出另外3个馆的位置吗?

  小结:要想确定一个位置,首先要确定列数和行数。

  [设计意图:这一题的设计意在使学生体会到:确定位置必须在二维的平面上给定两个明确的参数,使学生感受平面直角坐标系的本质思想。]

  四、拓展知识,体会价值

  谈话:用数对确定位置不仅在日常生活中有着广泛的应用,在军事、地理等很多领域也会用到,为了描述地球上各点的位置,地理学家建立了经纬线的概念。(课件展示动画介绍经纬线)现在我们就从卫星上找找上海世博园中中国馆的准确位置。

  提问:通过今天的学习,你知道了什么知识?

  谈话:数对给我们的生活带来了方便,但数对的出现却是一件非常偶然的事情。(课件介绍笛卡尔由蜘蛛织网而创造出数对的过程)希望同学们能够向数学家们学习,善于观察,勤于思考,从生活中发现更多的数学问题。

  [设计意图:结合数对介绍经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。数对创造过程的介绍,对学生进行情感态度的教育,并将他们的数学思考引向深入。]

  《用数对确定位置》教学设计 3

  教学目标:

  1、通过练习,使学生进一步提高用数对确定位置的能力。

  2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

  教学过程:

  一、基础练习

  下面是某一地区的平面图。

  1、用数对标出环球大厦和购物中心的位置。

  2、图中(11,4)表示的位置是()。

  3、()和()在同一行上。

  4、小明从公园门口出来,到书店该怎样走?

  (1)独立完成解答。

  (2)集体评讲。

  二、提高练习

  1、练习三第5题。

  (1)理解题意,明白“行”“列”表示的意思。

  (2)根据(x,5)这个数对,说说x表示的是列数还是行数?

  根据这个数对能确定什么?它表示的可能是哪个班?

  (3)在小组中说说第(3)小题。

  这里的x,y可能表示哪些数?为什么?

  2、完成练习三第6题。

  (1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。

  (2)在小组中设计交流。

  (3)展示作业,汇报结果。

  你能用数对描述一下自己设计的摆放位置吗?

  你觉得自己设计的如何?优点是什么?

  互相评价:设计是否合理?是否美观?

  3、完成练习三第7题。

  平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)

  第一个怎么变化的?

  独立在书上方格中完成第(3)小题。

  在小组中完成第(4)小题。

  说说顺次连接四个点得到了什么图形?

  4、完成练习三第8题。

  理解题意,简单介绍国际象棋的棋盘。

  棋盘上的'列车行分别用什么表示?

  用g2表示白王,和数对表示的方法相同吗?

  完成第(2)小题的填空。

  在小组中互相说说黑车从C6~C2,是怎样前进的?

  三、阅读

  “你知道吗”

  四、课堂总结

  用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。

  《用数对确定位置》教学设计 4

  教学目标:

  1.结合具体情境认识行与列,初步理解数对的含义。能用数对来表示具体情境中物体的位置。

  2.结合具体学习内容培养观察、推理与表达的能力,渗透“数形结合”的思想,发展空间观念。

  3.经历由实物图到方格图的抽象过程,渗透坐标的思想,发展空间观念。

  4.感受数学与现实生活的联系,养成积极参与数学学习活动的习惯。

  教学重点

  用数对表示物体的位置。

  教学难点

  在方格图中根据数对来确定位置。

  教学过程

  一、创设情境,激趣导入

  1.播放歌曲《我和你》,提问:这首歌同学们熟悉吗?去年我国成功举办了第29届奥运会,我想同学们肯定非常喜欢这些出色的运动员是吗?今天老师带来了部分运动员的照片,想看吗?(课件出示照片)

  2.这些运动员中,你最喜欢谁,把他的名字写在学习卡上,然后在反面简单描述一下他在屏幕上的位置,我们做个猜猜看的游戏。

  3.读学习卡,同学们猜,(一个人的位置从不同的角度观察会有不同的猜测,让同学们产生疑问)过渡:怎样才能更清楚的更简单的表示出一个人的.位置呢?这就是我们今天所要研究的问题(板书课题)

  二、设置疑问,引出数对

  (一)列、行的含义和确定第几列、第几行的规则

  1.我们先以同学们的座次为例,刚才你们说到的竖排指什么吗?(学生指一指)在数学上称列,从哪开始数,你们有两种数法,习惯上从左往右数。(板书左右)那从观察者的角度,也就是以老师的角度来看,谁是第一列,请起立,第三列、第五列。

  2.横排指什么,数学上称行。从哪开始数,(板书从前往后)谁是第一行,请起立,第三行。

  3.谁站了两次,为什么?

  4.现在你能更清楚的告诉我你在教室内的位置吗?你朋友的位置,你班长的位置。

  (二)、发挥想象,创造符号,渗透“数形结合”思想。

  1.同学们用简短的语言表述了班长的位置,数学讲究简练,那你能用更简练的方式表示班长的位置吗?小组讨论

  2.展示小组的意见,全班评价,找出最简单最清楚的方式。

  小结:你们真厉害,用一对数就表示出了一个人的位置,知道这在数学上叫什么吗?(板书数对)数对表示法是确定位置的一种方法,它是法国数学家笛卡尔发明的,看来同学们又当数学家的潜能。

  3.那现在用数对表示出你在班内的位置,好朋友的位置。

  4.老师说数对,听一听是谁的位置,请你站一下好吗?(3,4)(2,5)(5,2),比较后两个,你有什么发现,(4,Y)怎么回事?(让学生体会数对表示法,两个数字缺一不可)

  5.小结:在用数对表示位置时应该注意什么?

  二、逐步抽象,掌握方法

  过渡:同学们用这么短的时间,就把自己在班级内的位置表示的这么清楚、简单,可能是太熟悉这个班级了,老师带来了我们班的座次表,(课件出示)

  1.怎样确定王红、李娟的位置,(让学生说一说列、行)然后说出数对。

  2.把学生换成圆点,再来找一找王红、李娟的位置。(指名上来指一指)

  3.根据数对在方格图中找位置。

  数学家想了更简单的方式,就是把圆点用横线和竖线连起来,(出示表格),你能看懂吗?再来找一找王红、李娟的位置。(指名上来指一指)

  4.学生在表格上找出这些同学的位置,(3,2)、(4,4)(1,4)、(3,3)、(3,4)、(2,4)、比较一下有什么发现?作为未来的数学家,你想告诉大家什么结论。

  三、学以致用

  刚才我们研究了用数对确定位置,现在回到上课时的游戏中,姚明的位置能更清楚的告诉大家了吗?把你喜欢的运动队员在屏幕中的位置用数对表示出来,再玩猜猜看的游戏。

  四、拓宽视野,总结延伸

  1.用数对确定位置在生活中的应用非常广泛,大家可以在网上查询。

  2.介绍笛卡尔发明数对的故事,进行思想教育

  《用数对确定位置》教学设计 5

  教学内容

  苏教版课程标准·数学五年级下册第15页。

  教学目标

  1、使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2、使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学过程

  一、设境置疑,产生需要

  1、(课件出示学生座位图)仔细观察这幅座位图,你知道小军坐在哪里吗?(板书:第4组第3个;第3排第4个)

  2、设疑:小军的位置没有变,为什么同学们的说法都不一样呢?

  3、你能具体说一说第4组第3个是怎么看的吗?第3排第4个你们又是怎么看的呢?

  4、揭题:由于同学们看的方法和角度不同,所以在描述小军位置时,产生了不同的说法。那么,怎样才能正确、简明地描述小军的位置呢?今天这节课我们就一起来进一步学习确定位置。(板书:确定位置)

  [设计意图:通过呈现学生比较熟悉的教室里有序排列的座位的场景,激活学生头脑中已有的描述物体位置的经验;然后通过交流,引发学生产生用一致的方式表示位置的需要。]

  二、逐步抽象,掌握方法

  1、列、行的含义和确定第几列、第几行的规则

  (1)认识场景图中的竖排和横排

  ①继续观察上幅座位图,在教室里,竖里面有几排?如果从左往右数的话,这是第1竖排,这是第2竖排……这是第6竖排。

  ②在教室里,横里面又有几排呢?如果我们从前往后数的话,这是第1横排,这是第2横排……这是第5横排。

  (2)认识圆圈图

  ①为了清楚地表示每个同学坐的位置,现在我们把他们坐的位置都用圆圈表示出来。(课件出示)

  ②为了突出小军坐的位置,我们把小军坐的位置用红色圆圈来表示。(课件出示)

  (3)认识列

  ①从这幅圆圈图上,如果从左往右数,现在你还能指一指第1竖排在哪里吗?第5竖排在哪里?第6竖排呢?

  ②揭示:其实每一竖排在数学上我们都把它叫做列。(板书:竖排 列)确定第几列我们一般都是从左往右数的。(板书:从左往右数)

  ③想一想这一列应是第几列?这一列又是第几列?这幅图上一共有几列?(课件依次出示第1列到第6列)

  (4)认识行

  ①刚才我们已经知道每一竖排都叫做列,而每一个横排在数学上我们把它叫做行。(板书:横排 行)确定第几行一般是从前往后数的。(板书:从前往后数)

  ②想一想第1行在哪里?第3行呢?在这幅图上一共有几行呢?(课件依次出示第1行到第5行)

  (5)巩固列和行的认识

  刚才我们已经知道了列和行,请同学们闭上眼睛想一想,我们是怎样规定列和行的?(随学生回答,课件闪动演示)

  [设计意图:先认识场景图中的竖排和横排,然后把具体的场景图逐步抽象成圆圈图,为后面教学作了孕伏和铺垫。在此基础上,教学列、行的合义和确定第几列、第几行的规则,一切显得水到渠成。同时,借助于多媒体课件,形象直观地帮助学生理解规则。]

  2、数对的含义和数对表示位置的方法

  (1)学习用第几列第几行表示位置

  ①从圆圈图上,你能找到第1列第1行的位置在哪里吗?

  ②你现在还能用第几列第几行来描述小军的位置吗?

  ③现在同学们都用第4列第3行来表示小军的`位置,看来用第几列第几行的方法来描述小军的位置真好,让我们有了一个统一的说法。

  (2)学习用数对表示位置

  ①揭示:小军的位置是第4列第3行,我们也可以用数对表示。(板书:数对)

  ②猜一猜:既然是数对,你能不能猜一猜有几个数呀?

  ③介绍数对表示位置。

  数对有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为小军的位置是在第4列第3行,所以在这里我们应先写列数4,再写行数3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写上一个逗号,把两个数隔开。完成板书:(4,3),这个数对就表示小军的位置,我们把这个数对读作“四三”。

  ④想一想:数对(4,3)表示什么意思?

  [设计意图:通过让学生找“第1列第1行”的位置这一活动,然后根据圆圈图中小军的位置,有意识地让学生说说小军坐在“第几列第几行”,统一认识。在此基础上,给出用数对表示的方法,结合板书使学生理解数对中的每一个数各表示什么,从而初步理解数对的含义。]

  (3)尝试用数对确定位置

  ①在这幅圆圈图中,你还能找到第2列第4行的位置吗?这一位置用数对该如何表示?这里的2和4又分别表示什么意思呢?

  ②在练习纸上的圆圈图中,任意找一个位置,说一说你找的位置是第几列第几行,用数对怎样表示。

  ③交流:你找的位置是第几列第几行,用数对如何表示?

  ④如果有一个同学坐的位置是用数对(6,5)表示的,你能在圆圈图上很快地圈出他的位置吗?你是怎样想的?

  ⑤在练习纸上写一个数对,让你的同桌在圆圈图上找出相应的位置,并互相说一说这个位置是第几列第几行。

  [设计意图:联系例题中的圆圈图,通过指定用第几列第几行表示的位置,让学生完整地写出表示这一位置的数对;以及根据数对去找某一位置这两个活动,帮助学生加深对数对含义的理解,初步学会用数对表示座位所在的位置。]

  三、联系实际,加深理解

  1、用数对表示教室里的位置

  (1)谈话:刚才我们用数对很快确定了圆圈图上的位置,那么在教室里,同学们的位置是在第几列第几行,用数对怎样表示呢?

  (2)明确教室里的列和行。

  ①如果站在老师的角度来观察同学们的位置,想一想第1列应该在哪里?第5列在哪里?第8列呢?

  ②列我们已经清楚了,那第1行在哪里呢?第4行呢?

  ③请第1列第1行的同学站起来。

  (3)用数对确定位置。

  ①观察一下数学课代表的位置,看看是在第几列第几行,用数对怎样表示?

  ②你的位置在第几列第几行,怎样用数对表示呢?先自己想一想再告诉你的同桌。

  ③猜同学:在我们教室里有个同学的位置用数对表示是(3,4),猜一猜他是谁呀?

  ④猜好朋友:现在你不用告诉大家你的好朋友是谁,你用数对把你好朋友的位置表示出来,让大家猜猜他是谁。

  [设计意图:因为圆圈图中的位置和实际教室里的位置稍有不同,所以教师加强了指导作用。然后,通过用数对描述数学课代表位置、自己位置的活动,以及根据数对猜同学、猜好朋友的活动,让学生结合教室中的位置,进一步巩固对列、行和数对的含义的认识。]

  2、用数对表示装饰瓷砖的位置

  (1)谈话:在生活中的很多现象都用到了数对的知识。(出示练习三第2题瓷砖图)这是小明家厨房的一面墙上贴着的瓷砖,你能用数对表示这四块花色瓷砖的位置吗?

  (2)仔细观察这四块花色瓷砖的位置和表示的数对,你发现什么规律了吗?

  3、国际象棋记录棋子位置的方法

  (1)谈话:数对不仅在生活中有着广泛的应用,在竞技体育中也经常用到数对的知识。(课件出示国际象棋比赛的画面)

  (2)介绍国际象棋(课件依次出示)。

  ①国际象棋的棋盘。

  ②国际象棋表示棋盘方格所在列数和行数的方法。

  国际象棋棋盘上通常用小写字母a~h分别表示棋盘方格所在的列数,用数字1~8分别表示棋盘方格所在的行数。

  ③国际象棋的棋子。

  (3)交流理解国际象棋记录棋子位置的方法。

  ①(出示练习三第8题图)现在棋盘上白王所处的位置用国际象棋专用的方法记为g2,你知道它是用什么方法记录白王的位置吗?这个g2表示什么意思呢?

  ②棋盘上的黑王、黑车、白兵各在什么位置?先说一说,再记录下来。

  ③如果黑马的位置用d5表示,你知道它在哪里吗?如果白马的位置用f7表示,你又知道它在哪里吗?

  4、用数对表示礼堂中的座位

  (1)(课件出示练习三第5题图)找一找在这张位置图上一年级一班的位置在哪里?六年级五班的位置在哪里?

  (2)如果有一个班级所处的位置用数对表示是(□,3),你能确定是哪个班级吗?可能是哪些班级呢?为什么?

  (3)如果老师告诉你,这个班级的位置用数对表示是(2,3),现在你知道是哪个班级了吗?

  [设计意图:练习的形式活泼有趣,富有开放性和人文性,既拓宽了学生的知识面,又能让学生体会数对对确定位置的方法的应用价值。在活跃课堂气氛的同时。更有效地巩固了用数对确定位置这一新知识。]

  四、拓宽视野,全课总结

  1、介绍

  (1)用经线和纬线确定地球上任意一点位置的方法。

  (2)部分城市的地理位置,如:北京在北纬39°57′,东经116°28′;无锡在北纬31°35′,东经120°39′。

  (3)经度和纬度在航海、航天、气象、军事等方面的运用。(课件出示相关图片)

  2、全课总结

  (1)讲述:用经度和纬度确定位置和我们用数对确定位置的道理是一样的。

  (2)课外作业:数对的知识在生活中的运用很广泛,有兴趣的同学课后可以通过上网、看书等方式搜集这方面的资料。

  [设计意图:结合数对介绍地球仪上的经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。布置的作业由课内向课外拓展,可以使学生将书本知识与生活实际进行链接,感受数学与生活的密切联系,将数学思考引向深处。]

  《用数对确定位置》教学设计 6

  教学目标

  1、在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2、使学生能在方格纸上用数对确定位置。

  教学重难点

  教学重点

  能用数对表示物体的位置。

  教学难点

  能用数对表示物体的位置,正确区分列和行的顺序。

  教学工具

  多媒体课件

  教学过程

  一、导入

  1、我们全班有很多同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新授

  1、教学例1

  (1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。

  (3)教学写法:某某同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的.位置吗?

  2、练习

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  3、教学例2

  (1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“熊猫馆”“海洋馆”“大象馆”的位置。

  三、练习

  1、P20做一做

  (1)学生独立找出图中的字母所在的位置,指名回答。

  (2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、P23第7题

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、作业

  练习五第1、2、3、4、5题。

  课后小结

  生活中还有哪些是用数对确定位置的例子,你能举一些吗?

  课后习题

  1、音乐课,聪聪坐在音乐教室的第4列第2行,用数对(4,2)表示,明明坐在聪聪正后方的第一个位置上,明明的位置用数对表示是( )。

  A.(5,2) B.(4,3) C.(3,2) D.(4,1)

  2、如果A点用数对表示为(1,5),B点用数对表示数(1,1),C点用数对表示为(3,1),那么三角形ABC一定是( )三角形。

  A.锐角 B.钝角 C.直角 D.等腰

  《用数对确定位置》教学设计 7

  教学目标:

  1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。

  2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。

  3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

  重点难点:

  理解数对的含义,能用数对表示位置

  课前准备:

  课件

  教学过程:

  一、谈话导入

  师:同学们,上学期时间我们学校进行了课间操的展示活动,这是我们学校某班的同学(课件),在这次活动中小强是表现最出色的一个,你能说一说小强在什么位置吗?

  生:从右向左数第4排的第2个。

  师:谁还想说?

  生:从左向右数第2排的第3个。

  师:还有不同的说法吗?

  生:从后往前数,第4排的第3个。

  师:怎么同一个人的位置有这么多种说法呢?

  生1:人们是从不同的角度和不同的方位观察的。

  生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。

  师:正像刚才大家所说的,一个人的位置不变,但由于人们观察的角度不同,描述位置的.方法就不同。刚才大家在描述小强位置时,你有你的说法,他有他的说法,感觉怎样?

  生:有点乱。

  师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)

  【设计意图】从学生的实际情况和具体特点出发,了解已有的生活经验和知识背景。同时设置如何描述方阵中事物的位置,感受描述方法不统一带来的不便,体验统一描述方法的必要性。

  二、用列与行确定位置

  师:刚才同学们在描述小强的位置时,用到了“排”,“个”等词来描述位置,你们认为怎样为一排?

  生:横着是一排。

  师:还有不同意见的吗?

  生1:竖着也可以看作一排。

  生2:排是直的。

  师:有横排,也有竖排,在描述位置时很容易混淆了,在数学上我们通常把竖排称为“列”,把横排称为“行”。(板书:列和行)大家认为哪为第一列合适?

  生1:最左边的为第一列。

  生2:最右边的为第一列。

  师:你们认为从哪边起为第一列合适?

  生:最左边为第一列。

  师:能说说你的理由吗?

  生:我们观察的时候一般是从左边开始数的,这是习惯。

  师:这位同学说得多好啊,根据人们的习惯,我们通常把最左边的一列称为第一列,请你找到第2列,第3列…(课件)

  师:哪为第一行呢?

  生:最前面的是第一行。

  师:自己找一下第2行,第3行……

  师:你能用列和行来描述小强的位置吗?

  生:第3列第2行。

  师:还有不同说法吗?

  生:第2行第3列。

  师:在数学上我们通常先说列再说行。小强的位置可以说是在第3列第2行。(板书:第3列第2行)

  【设计意图】尊重学生原有的知识经验,创设情境激发学生的创造思维。通过不同理解、不同表述,让学生再次体验产生“统一标准”即做出规定的必要性。渗透正确的描述顺序,分解难点,为理解“数对”这一抽象的概念奠定基础。]

  三、探讨用数对确定位置

  1.抽象点子图。

  师:同学们观察,圆点代替学生(课件:人物图渐变成点子图),你还能找到小强的位置吗?

  生:能。

  师:你能说说是怎样找到的吗?

  生:先找到第3列再找到第2行,交叉的地方就是小强的位置。

  师:这位同学不但找到小强的位置,而且还介绍了自己寻找的方法。

  师:小青的位置在第几列第几行呢?

  生:第1列第4行。

  师:小刚的位置呢?

  生:第4列第5行。

  师:其它点的位置你能用列和行来表示吗?

  生:能。

  师:你能说出几个点的位置?

  生:所有点的位置。

  师:其实每一个点的位置我们都可以用第几列第几行的方法来表示。

  【设计意图】 通过让学生观察点子图的变化,培养学生抽象思维的能力,渗透数学的简捷性。

  2.探究用数对确定位置的方法。

  师:我们用第几列第几行的方法来表示位置,这个方法的确很简单。我们能不能用数学上的数或符号等创造出一种更简捷的方法呢?有没有这样的方法呢?同桌两人商量一下,如果有,请记录在小卡片上。

  学生活动,部分学生板书自己的表示方法。

  师:刚才我看到在开始时,大家都皱着眉头,可是后来经过努力都创造出了自己的方法,下面同学们来看这几种表示方法。谁来介绍一下你们自己的表示方法?

  (1)3列2行

  师:谁创造的这种表示方法?说一说你是怎样想的。

  生:这样表示很明白,而且比第3列第2行更简单了。

  (2)(3 2 )

  师:这种方法又是怎样想的呢?

  生:用竖线表示列,用横线表示行。

  师:这位同学很有自己的想法。

  (3)3 2

  师:这种方法是谁的创意?

  生:为了区分列与行,用圆圈表示列,三角表示行。

  师:这位同学很有创意。

  (4)3、2

  师:谁能看懂这种方法?

  生:用点把列与行隔开,这样表示非常方便。

  (5)3 2

  师:这种方法是怎样想的 ?

  生:我用竖线把行与列隔开。

  师:谁能对这些方法发表一下自己的看法?

  生1:我认为用第4种方法很方便,而且能表示第几列第几行。

  生2:这种方法虽然方便,但是万一看成三点二怎么办?

  生3:如果换成逗号就好了。

  师:同学们不但对方法进行了评价,而且还提出了自己的建议。

  师:谁还想评价一下其他的方法?

  生:我认为第一种方法比其它方法更容易懂一些,像其它的方法:三角、竖线等还要加以说明,别人看了不明白,而3列2行很容易明白。

  师:3列2行看起来的确很明白,可是与其他方法比呢?

  生:用3列2行表示不简单。

  师:明白了又不简单,简单了又不明白。其实大家在这么短的时间内创造出了这么多的方法已经很了不起了。这些方法有共同点吗?

  生1:都有3和2。(板书)

  生2:都有列和行。

  师:而且大家都想到了把列和行隔开,正像刚才大家说的我们用逗号把列和行隔开,因为表示一个人的位置,是一个整体所以再加上一个小括号。像这样用一对数来表示位置的方法称为数对。小强的位置可以用数对三二表示。

  师:小青的位置怎样用数对表示?

  生:(1,4)。

  师:小刚的位置呢?

  生:(4,5)。

  师:其它的位置我们可以用数对表示吗?

  生:能。

  师:你感觉用数对表示位置怎样?

  生1:非常简单。

  生2:既简单又准确。

  师:经过我们大家的努力,我们探讨了一种既简单又准确的表示位置的方法,也就是用数对来确定位置。(补充课题:用数对确定位置)

  【设计意图】让学生在具体的活动中进行独立思考,鼓励学生发表自己的意见,给学生提供了创造的机会,充分展示学生思维过程的机会。学生个性化表示的过程,就是感知、理解数对的过程,让学生亲身经历知识的形成过程,深刻理解概念。

  四、在方格图上确定位置

  师:同学们仔细观察,发生了什么变化?(课件展示渐变的过程)

  生:小圆点没有了,用横线和竖线穿起来了。

  师:还有其它变化吗?

  师:你是怎样找到的呢?

  生:根据小强的位置用数对(3,2)表示,只要找到第3列第2行就可以了。

  师:不仅小强、小青的位置我们可以用数对表示,今天同学们所在的位置也可以用数对来表示。在表示之前,首先要知道什么呢?

  生:一共有几列几行。

  师:哪是第一列呢?

  生1:从右边数。

  生2:从左边数。

  师:我们通常以观察者为标准,左边起是第一列。你认为哪是第一行呢?

  找一找自己的位置,然后用数对表示出自己的位置并记录在圆形卡片上。

  部分学生的卡片贴在黑板的格子图上。

  师:第一位同学的位置用哪一个数对表示?

  生:(1,2)。

  师:第二位同学的位置用哪一个数对表示?

  生:(3,1)。

  师:你能在格子图上找到自己的位置吗?

  生:能。

  【设计意图】 将人物图抽象为点子图,再将点子图抽象为方格图,引导学生经历知识的形成过程,渗透“数形结合”思想,发展空间观念。

  五、练习

  1.捉迷藏

  2.找到石榴王和石榴仙子在哪

  3.用数对表示各顶点的位置

  4.会说话的字母

  【设计意图】 通过练习,拓展学生的思维,进一步体验“坐标”思想,为将来进一步学习平面直角坐标系打下基础。

  六、小结

  其实在我们的生活中,还有很多地方也是利用了数对的方法和思想确定位置,请同学们课下继续研究。

  《用数对确定位置》教学设计 8

  教学目标

  1 知识与技能:

  让学生结合具体情境认识行与列,初步理解数对的含义;

  能在具体情境中用数对表示物体的位置。

  2过程与方法:

  使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

  3 情感态度与价值观 :

  渗透“数形结合”的思想,发展学生的空间观念。

  体会生活中处处有数学,产生对数学的亲切感。

  教学重难点

  1 教学重点

  经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

  2 教学难点

  灵活运用数对知识解决实际问题。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,激趣导入

  【师】课件出示多媒体教室上课情境图。

  【师】这是上多媒体课的情景,每一个同学都有一个单独桌子,教室的前面 是一个控制台,控制台的左下方是一个座位表。如果哪个同学有问题要问老师,只要按一下秘书桌上的按钮,座位表上相应位置的红灯就会点亮,老师就知道谁要发言。

  【师】播放动画。这时,红灯亮了,是谁提问了呢?

  【生】(看课件中红灯亮的位置)是张亮在提问。

  【师】那同学们,你们想知道哪一位同学是张亮吗?那们就来找一找吧。

  这节课我们就一起来进一步学习“确定位置”。

  【板书】第二章 位置 第1节 确定位置

  2 探索新知

  [1]寻找张亮的位置

  【师】课件展示多媒体教室全景大图,请同学们仔细研究座位表和同学们座位间的关系,找一找哪一位同学是张亮。可以看教材19页,在教材上标出张亮同学的位置。

  【生】在教材上寻找张亮的位置。

  【师】说一说,你是怎么知道这就是张亮呢?

  【生】红灯亮的是第二列第三行,学生座位中第二列第行的就是张亮。

  [2]明确行列的.含义

  【师】张亮是在第二列第三行吗?

  【课件展示】同在数学上竖排叫“列”,横排叫“行”。 “列”习惯上从左往右数,依次为第1列、第2列…… “行”习惯上从前往后数,依次为第1行、第2行……

  【师】同学们,张亮是在第二列第三行吗?

  【生】是。

  【板书】(第2列、第3行)

  [3]认识数对

  【师】为了表示方便,表示位置我们还可以用“数对”来表示。括号中第一个数字表示列,第二个数字表示行,中间用逗号隔开。张亮在第2列、第3行的位置,可以用数对(2,3)表示。

  【师】根据描述的习惯,你认为括号里这两个数各表示什么?

  【生】括号里的第一个数表示第几列,第二个数表示第几行。

  【板书】(2,3)

  [4]用数对表示位置

  【师】你能用数对来表示王艳同学的位置吗?

  【生】王艳的位置用数对表示是(3,4)。

  【师】括号里的3和4表示什么呢?

  【生】3表示王艳在第三列,4表示在第四行。

  【师】你们能不能用数对表示赵雪的位置呢?

  【生】赵雪在第四列第三行,用数对表示是(4,3)。

  【师】括号里的4和3表示什么呢?

  【生】4表示赵雪在第四列,3表示在第三行。

  【师】赵雪的位置能用数对(3,4)表示吗?

  【生】不能,赵雪的位置在第四列第三行,而第三列第四行的位置是王艳。

  【师】看来,数对(3,4)和(4,3)不仅是数的顺序不同,它们表示的位置也不同,所以我们用数对表示位置的时候,一定要遵循规则,数对前面的数字表示——列,后面的数字表示——行。

  巩固练习:请同学们利用刚才所学的知识写一写孙芳,周明,李小冬的位置。

  指定一个学生上白板上写。

  [5]巩固确定位置的方法

  1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

  2、老师说数对,学生根据数对找出相应的同学。

  [6]巩固拓展

  【师】生活中还有很多用两个数来确定位置的情况,你知道有哪些吗?

  【生】举生活中用数对确定位置的例子。

  【课件展示】1、楼宇案例门上表示几层几号的按钮。

  2、电影院里的座位——几排几号

  3、象棋棋盘

  [7] 课堂练习

  1、用数对(3,2)表示。你能用数对表示其他几个图案的位置吗?

  参考答案:

  苹果用数对表示(4,3);西瓜用数对表示(2,1);香蕉用数对表示(4,1);樱桃用数对表示(2,3)。

  2、下图是国际象棋。

  (1)她是怎样确定棋子位置的?

  (2)你能像她那样说一说每个棋子的位置吗?

  参考答案:白方的“王”从左向右数在“e”列,从下往上数在“1”行,所以用数对表示为(e,1)。

  [8]课堂小结(PPT投影)

  【师】同学们,这节课我们学习了确定物体位置的方法,相信同学们一定大有收获,谁来说一下收获呢?

  【生】我学会了怎样用数对表示位置。

  我知道了数对中第一个数表示列,第二个数表示行。

  我知道竖排叫列,一般从左往右数,横排叫行,一般从前往后数。

  板书

  第二章 位置 第1节 确定位置

  (第2列、第3行)——(2,3)

  数对 (3,4)

  (4,3)

  列 行

  竖排叫列,一般从左往右数

  横排叫行,一般从前往后数

  《用数对确定位置》教学设计 9

  教学内容:

  新人教版五年级上册第19-21页的例1、例2及“做一做”和练习五的有关习题。

  教学目标:

  1、通过观察同学在班级的位置,引出列、行的概念。

  2、通过谈话交流,确定第几行、第几列的一般规则,学会用“数对”确定位置。

  3、结合具体情境,进一步体验用数对确定物体位置的必要性,能根据数对在方格纸上确定物体的位置。

  4、通过运用数对确定位置的方法解决实际问题,让学生体验数学与人类生活的密切联系,感受确定位置的丰富现实背景,体会数学的价值。

  重点:在具体的情境中用数对表示物体的位置。

  难点:在已有的学习经验的基础上将用列、行来表示提升为用数对来表示物体的位置。

  教学过程:

  一、谈话导入

  同学们,你们知道我们班上周的“每周一星”是谁吗?能说出她的位置吗?

  出示课题:确定位置

  二、探究新知

  1、认识第几列第几行。

  (1)课件演示列和行。

  (2)说说某个同学在第几列第几行。

  (3)游戏:请一位同学报第几列第几行的同学起立,答对的接着报下一个同学的位置,一直接力下去。尽量让更多的同学有锻炼的机会。(答错的请说出自己的正确位置。)

  2、学习用数对确定物体的位置。

  (1)比赛:老师报位置,如:第2列第3行,你们把老师报的位置记录下来,看谁能把老师报的位置全写下来。(老师报的速度可不慢哦)

  比赛结束,将记录比较多的同学展示给大家看,看看他们的.记录方法,并加以表扬。

  (2)课件演示用数对表示位置。

  请同学说说是如何表示的,它表示的是什么意思?继续用课件演示将具体是人物的位置抽象用“格子”或“点”来表示物体位置。

  (3)学生独立完成课本第20页例2。在格子图上用数对表示各个场馆所在的位置以及标出指定场馆的位置。

  (4)将错误的展示,请大家讲评。之后将正确的展示给大家看。

  三、巩固练习:

  课本第20页的“做一做”。

  《用数对确定位置》教学设计 10

  课题:

  第二单元:位置(在方格纸上用数对确定物体的位置)第课时总序第个教案

  课型:

  新授编写时间:

  教学内容:

  教材P20例2及练习五第3、4、6题。

  教学目标:

  知识与技能:

  理解方格纸上数对的含义。

  过程与方法

  结合方格纸用数对来确定物体的位置,能依据给定的数对在方格纸上确定位置。

  情感、态度与价值观:

  在确定位置的过程中,增强学生解决实际问题的能力,提高应用意识。

  教学重点:

  掌握在方格纸上用数对确定物体的位置。

  教学难点:

  正确描述物体所在的位置。

  教学方法:

  自主探索,合作交流。

  教学准备:

  师:多媒体。生:方格纸。

  教学过程

  一、情境引入

  1、复习:上节课学习了用数对来表示物体的位置,谁来说一说数对中的第一个数字表示什么,第二个数字表示什么?

  (数对中的第一个数字表示“列”,第二个数字表示“行”。)

  2、导入:(出示如下示意图)那么,今天我们继续来学可数对的知识,先来看下面的示意图,你们能用数对分别表示出各场馆的位置吗?

  熊猫馆

  大象馆海洋馆

  猴山

  大门

  引导学生用数对分别表示出各场馆所在的位置。

  指学生回答,并说一说是怎么确定它们的位置的。

  二、互动新授

  1、出示教材第20页“动物园示意图”。

  (1)引导学生观察图,并比较它和刚才的示意图有什么不同。

  引导学生理解图意:横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

  (2)提出问题:图上的数字表示什么?

  引导学生理解:纵向排列的数字表示行,从下往上数;横向排列的数字表示列,从左往右数。图上的数字表明行和列的起点均为o。

  (3)引导学生观察这幅方格图,问:你能用数对表示出大门的位置吗?

  指生回答:大门(3,o)。

  组织同桌互相说一说其他场馆的位置。

  小组互相交流、探讨,教师进行相应的指导。

  集体订正,并用多媒体出示各场馆的位置:

  大象馆(1,4)猴山(2,2)大门(3,o)熊猫馆(3,5)海洋馆(6,4)

  2、指生到黑板指一指下面场馆的位置:飞禽馆(1,1)、猩猩馆(o,3)、狮虎山(4,3)。

  并说说自己是怎样标出各个场馆的位置的。

  引导学生回答:飞禽馆(1,1)是在第一列第一行,猩猩馆是(1,3)在最左边一列第3行,狮虎山是(4,3)在第四列第三行。

  3、拓展延伸。

  (l)引导学生分别观察飞禽馆、大象馆以及猩猩馆和狮虎山在图中的位置和表示它们位置的数对,你有什么发现?

  引导学生说出:大象馆和飞禽馆在同一列,它们的数对第一个数相同;猩猩馆和狮虎山在同一行,它们的数对第二个数相同。

  师小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  (2)质疑:如果用(x,4)表示某场馆的位置,能确定在哪里吗?

  小组交流,并指生汇报。

  教师引导学生总结:由于字母表示的数不确定,所以这样的数对只能确定这个场馆在哪一条横线上,但不能确定这个场馆的.具体位置,使学生明确必须要有两个数才能确定一个位置。

  4、找生活中的数对。

  用数对表示位置在生活中有着广泛的应用,你能举出例子吗?

  小组讨论交流,如:地球仪上的经纬网、十字绣、围棋棋谱等。

  三、巩固拓展

  1、完成教材第20页“做一做”第1题。

  先让学生自主完成,然后再说一说你是怎么确定的。

  2、完成教材第20页“做一做”第2题。

  先把题目的要求读一读,自主完成,然后同桌互说。

  四、课堂小结

  师:同学们,这节课你们都学会了哪些知识?

  生1:我学会了在方格图上用数对表示位置。

  生2:我知道表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

  作业:P21~22练习五第3、4、6题。

  板书设计:

  在方格纸上用数对确定物体的位置

  熊猫馆(3,5)海洋馆(6,4)

  猴山(2,2)大象馆(1,4)大门(3,o)

  表示同一列物体位置的数对,它们的第一个数相同;

  表示同一行物体位置的数对,它们的第二个数相同。

  《用数对确定位置》教学设计 11

  教材分析:

  《用数对确定位置》是北京版数学第七册第五单元《方向与位置》的第一课时。“用数对确定位置”这部分知识是在学生原有知识的基础上—“确定位置”进一步的学习和提升,是培养学生的空间观念,也是今后进一步学习相关知识——“图形与坐标”的重要基础。在学习本课之前,学生已经在第一学段学习了前后、上下、左右等物体具体位置的知识,这些知识为学生进一步认识物体在空间的具体位置打下了基础。本节课的学习则是第一学段学习内容的发展,学生已经具备一定的生活经验,因此学习从学生十分熟悉的座位图着手,通过说座位,引出第几列第几行的话题,接着再从第几列第几行抽象出数对的表示方法,这一从学生的经验中,逐步抽象出数学的表示方法,符合学生由具体到抽象、由特殊到一般的数学认知规律,对提高学生的空间观念,认识生活周围的环境,都有较大的作用。本节课内容是通过学习可以让学生在具体的情境中,进一步探索确定位置的方法,并能比较灵活的运用方法确定物体的位置。

  学情分析:

  四年级学生对空间与图形这方面知识已经有了初步的认识。这一年龄段的孩子直观形象能力较强,具备一定的观察、归纳、自主探究、合作学习的能力,能够通过体验、研究、类推等实践活动,概括出一些数学概念,掌握一些数学规律。但他们的逻辑思维能力和抽象的空间概念还没有完全建立,所以在教学这一内容时要根据学生的思维特点,密切联系学生的`生活实际,结合具体情境,引导学生经历知识的形成过程,让学生自主发现,探究并获取知识。另外,在日常生活中,根据需要按一定顺序排列是学生已有的经验。如:课间操站排、教室的座位等。但是用数对表示位置顺序,并在方格图上用数对确定位置,学生还是第一次接触,因此教学时,应从学生已有知识经验出发,创设现实情境,增加学生参与,体验的机会让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

  教学内容:第一课时

  教学目标:

  1、能初步理解数对的含义,会用数对表示具体情境中物体的位置。

  2、结合具体情境,通过形式多样的确定位置的练习,让学生在探索知识的过程中发展空间观念,并增强其运用所学知识解决实际问题的能力

  3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学重点:学习用数对的形式描述物体的具体位置。

  教学难点:学习用数对的形式描述物体的具体位置。

  教学过程:

  一、谈话引入

  1、今天由杨老师给大家上节课,能告诉我你们是哪个班的吗?(三1班)

  2、是三年级1班,那为什么不老老实实告诉我“三年级1班”,而只说“三1班”呢?

  (这么说简单;说三1,人家也知道是三年级1班……)板书:简洁

  3、既然这样,那我觉得还能再简单点,人家问我哪班的,我就说1班,行不行?

  (不行,不知道是哪个年级的)那说三就行了吧?(不行,是三年级还是三班?)

  4、看来生活中,不能因为简洁而省略重要的字,还得注意准确。板书:准确

  二、合作探究

  (一)明确行、列

  1、其实数学也是这样。以前我们已经学过有关行和列的知识了,怎样叫一列?(竖着看,这一组也就是一列。)一行呢?(横着看,这一排也就是一行。)

  2、这是红星小学四3班同学的座位图,你能用行和列猜猜李红的位置吗?(生随便猜)怎么样?(太难了,这么多人……)

  3、那给点提示吧,李红在第4列。板书:第4列第4列在哪呢?(有人指着这边,有人指那边)数列时都从观察者的左边数起。现在,谁是观察者?(我们)哪是第一列?(指一指)依次出现列数

  4、现在你猜吧,李红在哪?(生猜)这回好猜吗?(还是不行,第4列有好几个女生呢)那怎么办?看来光说列还不能确定李红的位置,还得需要知道第几行。

  5、补充板书:第3行再来看看,李红在哪呢?(指一指)有不同意见吗?(我认为是这个女生呢。)那到底是哪一个?(从前往后数……)哪是前边?数行的时候,从离观察者最近的一行数起,图中就是从下往上数。依次出现行数。

  6、现在,能确定李红的位置了吗?她在哪?(从左边数第4列,从下边数第3行)看来,通过第几列第几行就能确定一个人的位置了。

  7、看图出示(课件)的同学,能说出他们的位置吗,老师板书。

  (二)认识数对

  1、学生一起说位置,老师板书。停,不能再写了,你们说得太快,我都跟不上你们的速度了,这么写太麻烦了,有没有更简洁明了的方法表示第几列第几行呢?

  2、以李红的位置“第4列第3行”为例,四人小组,看看能不能集中大家的智慧,创造出一种更简洁,同时也很准确的方法。别忘了,把研究出的方法,记录在纸上。如能找到不同的方法,都可以记录下来。(小组合作)

  3、投影展示,说说自己的想法。(①4列3行②43③4.3④4-3⑤↑4→3……)

  这些方法似乎都挺简洁,到底该选哪一种呢?还是请大家来作评判吧。(生自由评说)难道,刚才被批评的方法,一点值得肯定的地方都没有吗?(它们都比原来要简洁一些)这就是一种进步!不过,除了简洁,难道就没有别的什么共同的地方?(它们都有4和3这两个数)多善于观察!那剩下的几种方法呢?(也都有这两个数)既然每一个小组都不约而同地保留了这两个数,说明?(这两个数很重要,缺一不可)

  4、4表示?3表示?没有了这两个数就不能表示第4列第3行了。

  大家真是了不起!想到了可以用两个数分别表示“列”和“行”来确定位置。其实,你们的方法已经很接近数学家的方法了,他们也是用两个数来确定位置,只不过是用 “,”把两个数隔开,再加上小括号。板书:(4,3)这种表示方法叫数对。

  读的时候要读“谁的位置是数对四三”,他表示的意思是“第4列第3行”。

  5、你知道黑板上的这几个位置怎样用数对表示了吗?在你的纸上写一写。

  (指名几人板书,写出位置所在的名字和数对,反馈订正。)

  6、现在,站在老师的角度观察能说说你在咱们班里的位置吗?哪是第一列第一行?

  亲自找一人上前来指一指哪是第一列哪是第一行。(其他人也可上前来)

  (1)用数对表示自己的位置。

  (2)看来,自我介绍并不难。能用这样的方式介绍一下你最好的朋友吗?让我猜猜他是谁?

  (我的好朋友的位置是数对(5,3))

  让我也来认识一下你的朋友,第5行,第3列。认识你很高兴。

  (质疑:不对,我说的是……,您说的是……,不是一个人)

  不都是5和3这两个数吗?怎么不对了?

  (5表示第5列,3表示第3行,先说列,再说行,不能前后颠倒……)

  看来,只剩下数字时,必须规定先说什么后说什么,否则就乱了。用数对表示位置时,先说第几列后说第几行。

  (3)让我重新认识你的好朋友,是这个同学吧,真高兴认识你。

  (三)认识网格图

  1、如果把咱们班每个座位都看成是行和列相交的点,这些点用线连起来,我们的座位图会变成什么样呢?出示网格图

  2、哪是第一列第一行?指出,依次出现。你手中也有一张这样的网格图,找到哪是列,哪是行。标注,快在网格图上找到你的位置,描出点,投影展示位置,大家猜是谁。

  3、在网格纸上根据数对找到以下几名同学的位置,描点。(3,1)(3,2)(3,3)(3,4)(3,5)

  你有什么发现?(都是同一列同学,数对中第一个数字都相同)

  那数对中第2个数字相同呢?(表示同一行同学)

  比如,出示(6,1)(5,1)(4,1)(3,1)(2,1)(1,1)图,谈发现。

  4、《分层测试卡》基本练习:分成测试卡第54页第2题;巩固练习:分层测试卡第55页第1题

  三、生活中的应用

  1、北京奥运会上的击缶而歌,如果某一个人的动作需要改进,怎样快速找到他的位置呢?就可以用第几列、第几行的方法快速确定位置。

  2、象棋、围棋的棋盘,要想描述某一个棋子的位置,可以用数对的形式。

  3、航天飞机和地球经纬线看,数学其实就在我们身边,只要认真观察就会发现很多知识。

  四、总结收获

  1、翻牌游戏

  2、谈谈这节课的收获。

  《用数对确定位置》教学设计 12

  教学内容:

  教材P19例1及练习五第1、2题。

  教学目标:

  知识与技能:

  使学生在具体的情境中认识“列”与“行”的含义,知道确定第几行、第几列的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  过程与方法:

  使学生体验数学与生活的密切联系,进一步提高用数学的眼光观察生活的意识。

  情感、态度与价值观:

  培养学生的空间意识和能力,进一步培养数感。

  教学重点:

  会用数对确定物体的位置。

  教学难点:

  正确区分“列”和“行”的顺序。

  教学方法:

  自主探索,合作交流。

  教学准备:

  多媒体。

  教学过程

  一、情境引入

  1、导入:同学们,你们想不想知道其他班级上课的情境是什么样的呢?今天咱们就去五年级某班看一看。看,这是张亮班级里的学生,多整齐!你能告诉老师张亮的位置吗?

  (出示教材第19页情境图中张亮那一列同学的'座位)

  学生可能说:第3个、从前面数第3个、从后面数第3个等。

  教师引导学生分析,要在一列座位中确定一个人的位置只要说清数方向和第几个就行了。

  2、揭题:今天我们就来学习如何用数对来表示物体的位置。

  (板书课题:用数对确定物体的位置)

  二、互动新授

  (一)明确行、列的意义

  1、师引导:这么多表示方法有些乱,同学们所说的“排”,在数学上竖排叫“列”,横排叫“行”。(板书:列行)

  并明确:数“列”的时候习惯上从左往右数,依次为第1列、第2列……数“行”的时候习惯上从前往后数,依次为第1行、第2行……把教材第19页情境图上的每一列和每一行按顺序写上,同桌互相指一指。

  说明:通常情况下,描述物体位置时先说列,再说行。

  让学生用正确的方法描述张亮的位置。(第2列、第3行)

  2、引导:你能用刚学习的知识描述一下其他同学的位置吗?(举例王艳、赵雪,周明位置等)

  让学生随便指图上一人,同桌互相说一说他的位置。(学生练习)

  (二)认识数对

  1、引导:表示位置我们还可以用“数对”来表示。这就是今天我们要学习的主要内容:用数对确定位置。张亮在第2列、第3行的`位置,可以用数对(2,3)表示。

  2、质疑:根据描述的习惯,你认为括号里这两个数各表示什么?

  (第一个数表示第几列,第二个数表示第几行。)

  强调并让学生明确数对的第一个数表示第几列,第二个数表示第几行。

  (三)用数对表示位置,根据数对确定位置

  1、让学生用数对分别表示图中其他同学的位置。(王艳、赵雪等)

  学生回答:王艳的位置用数对表示是(3,4),赵雪的位置用数对表示是(4,3)。

  2、讨论我们用数对表示物体位置时要注意什么问题?

  (不要把列和行弄颠倒了。)

  (四)应用知识

  1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

  2、你能用数对表示你的前后左右邻居吗?说一说,并思考有什么发现。

  (1)让学生互相说一说,并讨论。

  (2)引导学生明确:前后邻居数对的第一个数与自己相同,左右邻居数对的第二个数与自己相同。

  3、做游戏:教师说数对,学生根据数对找出相应的同学。

  4、找数对:大家来找一找生活中的数对。

  学生自由发言,指名学生说一说,如找座位,找楼座等。

  三、巩固拓展

  完成教材第19页“做一做”。

  先让学生分组讨论,然后再说一说。

  四、课堂小结

  师:同学们,这节课你们都学会了哪些知识?

  生1:我学会了怎样用数对表示位置。

  生2:我知道了数对中第一个数表示列,第二个数表示行。

  师:除了以上两位同学所说的之外,在用数对表示物体的位置时还要注意,列是从左往右数,行是从前往后数。

  布置作业:

  板书设计

  用数对确定物体的位置

  竖排一列左一右

  横排一行前一后

  数对(列,行)

  《用数对确定位置》教学设计 13

  一、说教材

  1.教材内容

  《用数对确定位置》是苏教版小学数学四年级下册第八单元P98——100的教学内容。

  2.教材分析

  本课安排的是用从生活中的电影院中位置的确定来引入数对的方法。教材呈现的例题是小军在教室的位置的问题情境,“用数对确定位置”是在第一学段已经学了上下、前后、左右以及第几排第几个的基础上进行学习的,是第一段学习内容的延续和发展。让学生用抽象的数对来表示位置,进一步发展学生空间观念,提高抽象思维能力,为今后进一步学习“图形与坐标”打下重要基础。

  3.教学目标

  我是从知识与技能、过程与方法、情感、态度与价值观三个方面来设计本节课的教学目标

  (1)、知识与技能:使学生在具体情境中认识列、行的含义,知道确定第几列第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  (2)、过程与方法:使学生经历由具体的座位图到用列、行表示的平面图的抽象过程,进一步发展空间观念。

  (3)、情感态度与价值观:使学生感受用数对表示位置的简洁性,体验数学与生活的密切联系,进一步增强用数学眼光观察生活的意识。

  4.教学重、难点

  从学生的知识结构和年龄特征出发,我理解本课的

  教学重点:初步理解并掌握用数对表示位置的方法。

  教学难点:能正确使用数对表示具体情境中物体的位置。

  二、说教法、学法

  1.教法:

  本课时主要采用“探究式教学法”,辅以“情境教学法”进行教学。教学中,从生活中常见的电影院导入新课,借助找位置的实际问题,让学生逐步形成如何去确定位置,再让他们小组交流,从中巩固新知,学会写数对,从而发展学生的数学技能。

  2.学法:

  学生作为主体,在学习过程中的学生的参与状态和参与度是决定学习效果的重要因素。因此在学法的选择上体现出“玩中学——学中玩——在合作交流中学——学后交流合作”的思想。

  三、说教学过程

  教学过程:

  (一)、导入

  提问:《题西林壁》这首诗学过吗?为什么诗人不识庐山真面目?

  指出:观察物体角度很重要。中国有句俗话“当局者迷,旁观者清”,就是告诉我们要以旁观者、局外人的视角观察人、事、物,才能更准确。

  (出示电影院的座位图)提问:同学们,你们去看过电影吗?这是电影院一个厅的平面图,竖着的一排叫什么?横着的一排呢?(板书:竖排叫列,横排叫行)

  老师想要观察这个厅所有的观众,应该站在什么位置?(银幕的位置)

  指出:会选角度观察,我们今天的课就成功了一半。下面就进入我们的数学之旅吧!

  (二)、认识数对

  1、游戏——寻找幸运观众

  (1)给出任务:电影院今天搞活动准备在这个电影院里选择三位观众免费观看,已找出两位,剩下的一位,让学生自己寻找。

  (2)寻找幸运观众

  第一步:漫无目的寻找。

  第二步:根据提示寻找。教师给出提示(3,2),学生根据提示指一指幸运观众可能在的位置,教师用投影显示8个可能的位置。

  第三步:根据视角寻找。进一步缩小范围,点击鼠标,寻找出幸运观众。

  提问:为什么一个提示出示8种可能?(不知道哪个数据表示行或列,也不知道是从哪边开始数起的),你认为观察者在哪?根据观察者的视角和(3,2),你认为可能在哪?

  (3)理解数对的含义。

  提问:(3,2)表示什么意思?(板书:第3列,第2行)列是从观察者的哪边开始数起?行呢?(板书:从左往右从前往后)

  指出:像这样用一组数表示物体位置的方法就是我们今天研究的内容。(板书课题:用数对表示物体位置)

  提问:你觉得用数对表示物体的位置有什么好处?(简洁)能不能将逗号省去?能不能将()省去?(逗号将列和行分开,括号是数对的特征)

  (4)运用数对

  用数对表示出前2位幸运观众的位置。用数对表示自己的位置

  提问:以谁的视角来观察,哪边是第一列?(选5个同学,其他同学用手势表示正误,)

  提问:比较一下,你和你的同桌写出的数对有什么相同点?为什么?

  (三)、用数对确定位置

  1、★出示“小军班上的座位表”。(表略)

  师:你能说出小军的位置吗?

  生:小军在第4列第3行

  小结:一起数在第四列,第三行。用数对表示,小军的位置是(4,3)。

  2、★师:如果我们把每个同学的位置看成一个圈,就成了这样的图形。

  (多媒体显示,把刚才的图片抽象化,每个同学只用一个圈表示)

  师:小军在班上的好朋友小林坐在教室的这个位置,你能用数对表示出小林的`位置吗?谁来说一说师:这些实际上是我们数学教学用书上的,实际上我们生活中也有很多关于数对的问题

  (四)、巩固练习

  1、课件出示练习三第2题:

  (1)小明家刚买了新房子,正在装修,这是他家厨房一面墙上的瓷砖,请用数对表示四块装饰瓷砖的位置。

  (2)各自在书上填写后指名汇报,全班交流。

  (3)讨论:你发现表示这两块瓷砖位置的数对有什么特点吗?(注:两块出示后讨论,再出示第3块讨论)

  在同一列的瓷砖,数对中的第一个数相同在同一行的瓷砖数对中的第二个数相同

  2、课件出示练习三第3题

  学校要举办艺术节,准备放置一些花来装饰一下我们的校园,我们一起去看看吧。

  (1)写数对:能用数对表示出这些盆花的位置吗?各自在书本上填写后指名汇报,全班交流。

  (2)找规律:观察这些盆花的位置,你发现了什么?先让学生在小组中说说自己的发现,再组织全班交流

  3、学习了这么长时间,同学们也有点累了,我们一起来玩个找字的游戏,好吗?

  出示题目以及游戏规则,玩四次。指名交流思考题,安排位子

  你知道吗,介绍笛卡尔如何想到数对。

  拓展延伸,拓展到三维的角度

  (五)、全课总结

  这节课大家学习的很棒,摩斯侦探想再考考大家,你们有信心用今天学习的数对的知识找出摩斯密码下的秘密吗?下课了。

  四、说板书设计

  板书主要就是从问题想起的策略的一个思考过程,比较清晰,简单,能突出说出这节课的重点

  用数对确定位置

  竖排叫列从前往后数对。

  横排叫行从左往右(4,3)

  五、总结

  以上是我对本课教材教学以及教学方法的预设。基于对本课的设计理解,我认为我们应从数学思考、数学意识的层次上解读用数对确定位置,而不能将此类课型简单地的教学。

  学生从生活实际慢慢的到需要引入数对来确定位置,比较自然,学生在学习时也是一个循序渐进的过程。

  《用数对确定位置》教学设计 14

  教材分析

  本节内容是在第一学段的位置学习的基础上,使学生“能用数对表示具体情境中物体的位置”,进一步提升学生的已有经验,培养学生的空间观念,为第三段学习“图形与坐标”打下基础。

  学 情 分析

  学生在一年级下册已学会了用第几组第几个确定物体的位置,并在四年级下册位置与方向学习中掌握了位置与方向的描述和根据描述标出物体位置的方法,生活中部分学生已经具备了用行和列(或者排等)描述学生座位的经验,虽然他们所说的第几行或者第几列都是根据自己的习惯随意确定的标准,没有统一的规定,但是这些经验却是学习本课的内容的重要铺垫,这些经验有助于孩子们对数学化地描述物体的位置的方法理解。

  教学目标

  1 .能在具体情境中用行和列的确定位置,初步理解数对的意义,并能用数对表示具体情境中物体的位置,也能在方格纸上用数对确定物体的位置。

  2.引导学生经历从文字描述到用数对表示物体位置及由实物图到方格图的创造过程,体验用数对确定位置的优越性,渗透数形结合和一一对应的思想,发展空间观念。

  3.感受数学与生活的联系及学习(创造)数学的乐趣,进一步增强用数学的方法观察生活和解决生活问题的意识。

  教学重点 :初步理解数对的含义,掌握用数对确定物体位置方法。

  教学难点 :能在方格纸上用数对确定物体的位置。

  教学准备 :多媒体课件

  本课 重点环节设计意图说明:

  1.把书上的主题图改成自己班级的座位图,目的'既为激发学生兴趣,也想体现数学来源于生活 。

  2.让学生按照自己的想法描述班长的位置,旨在激活学生头脑中已有的生活经验和知识基础,这是有效学习的基础。通过交流、谈感受,是学生认识到:多种不同的说法不便于交流,从而产生统一说法的需求,体会学习新知识的必要性。在这样的状态下揭示课题能够激发学生的求知欲望、集中学生的注意力。尽管不是所有的学生都能想到用“列”和“行”来说明一个人的位置,但是,对于这两个词学生并不陌生,也不难理解,所以让他们自己尝试解释“列”和“行”就是希望实现“学生对自己生活经验中数学现象的解读与提升”,同时也让学生经历一个完整的从生活到数学的思考过程。

  3. 在确定哪边是第一列时学生出现分歧,有的从左数,有的从右数。师再一次借助学生生活经验创造认知冲突,引导学生自发意识到统一规定的必要性,再一次体会数学来源于生活的需要,再一次经历数学化过程。

  4. 让学生自己独立创造更简单的表示方法,就是为了给学生提供一个发挥自己聪明才智的机会,让他们经历从文字描述到符号表示的数学化过程,在培养学生的符号意识和创新意识的同时也让他们感受到数对的优越性和数学的简洁美;在展示个性化思维方式的基础上进行的互动式点评,主要是想让他们学会取人之长补己之短,实现思维共享。

  5.在让学生用数对表示可儿位置的时候, 教师为学生刻意提供反例,一方面为了突出“规定数对书写顺序”的必要性,另一方面也能够让学生初步感知到:一个数对对应着一个位置,一个位置只能写出一个数对,渗透“一一对应”的思想。

  6. 游戏的安排既为了及时消除学生的心理疲劳,继续保持积极的学习热情,也为了让学生从数学回到生活,真实感知数对的生活化,并能够在游戏中发现规律,加深对“用数对确定位置”这一新知识的理解。游戏中设计的几个问题是想让学生观察到:一个人变成了一列人,一列人又变成了一个个人。通过这样的变化使学生清楚地发现:

  ① 通过不完整的数对(4,x)使学生感受到数对是两个数,两个数缺一不可,只有一个数不能确定一个具体位置。

  ② 一个数对只能表示一个位置,一个位置只对应着一个数对,再一次感受“一一对应”。

  ③ 表示位置在同一列(或者同一行)上的数对,第一个数(第二个数)相同,反之亦然,渗透“数形结合”的思想。

  7. “能在方格纸上用数对确定物体的位置”是本节课的教学难点,为了突破这个难点,我对教材的安排做了简单的调整:即,把格子图寓于座位图中,让学生借助已经初步具有的符号意识和教师的提示(比如这一列可以怎么画呢),把座位图简化成格子图。通过这样的独立创造,让他们再一次经历从直观座位图抽象出方格图的数学化过程,进一步建立符号意识,体会数学的简洁美。教师不失时机地利用课件动态呈现从座位图演变成格子图的完整过程,目的是让学生通过观察发现:列线和行线的交点就是学生的位置,看懂了这一点,就看懂了格子图,这正是突破难点的关键。

  8. 拓展“鸟馆”旨在打破学生的认知平衡,这样既可以引导学生将方格图向上下左右延伸,培养空间想象力,又能和中学要学习的坐标系建立联系,进而拓展学生的思维。

  9. 把课本中的练习题进行发挥使用,是想让学生经历发现问题、提出问题、分析问题、解决问题的完整过程,培养学生学以致用的意识。进一步感受数对确定位置的实用价值,并在应用学过的知识解决生活问题的过程中获得成功的体验。

  10. 课堂总结一方面引导学生梳理本课知识点,让学生进一步感受数学思考的价值;另一方面通过教师设疑引导学生建构从一维到二维再到三维的知识链,并把学生的思考延伸到课后。

  现在回顾这节课,还是觉得练习设计比较少,其实这个问题在备课时就想到,比如课后关于数形结合的根据数对涂一涂的练习,还有生活中的知识拓展,地球上的经度维度问题,以及想介绍创立坐标系的法国数学家勒内·笛卡尔的相关信息,顺便渗透数学文化,但是考虑到时间的问题,而且这节课我更多关注学生的学习创造过程,给孩子充分的空间让他们自己试着设计数对,其实这也是我从教这么多年来比较困惑的地方,到底是该更多关注学生学习的过程还是结果,也是这里我想和大家交流探讨的地方,希望能得到各位专家和同仁的帮助,谢谢大家!

  《用数对确定位置》教学设计 15

  一、教学目标

  知识目标:

  结合具体情境认识行与列,理解确定第几列、第几行的规则。

  初步理解数对的含义,并能用数对表示具体情境中的位置。

  能力目标:

  经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  增强学生的运用所学知识解决实际问题的能力。

  情感目标:

  体验数学与生活的密切联系,拓宽知识视野,体会数学的价值。

  增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

  二、教学重点与难点

  教学重点:理解数对的意义及表示方法。

  教学难点:正确地用数对描述物体的具体位置。

  三、教学过程

  创设情境,引发冲突:

  通过展示教室座位图或类似的情境图,引导学生尝试描述某个同学的位置。

  由于学生可能采用不同的描述方式(如从左往右或从右往左数),导致描述结果不一致,从而引发认知冲突。

  引出课题:确定位置的方法需要统一和简化。

  认识列与行:

  介绍列和行的概念,明确竖排为列,横排为行。

  引导学生确定第一列和第一行的位置,并依次数出其他列和行。

  通过具体情境图或多媒体动画展示,帮助学生理解列和行的含义。

  学习用数对表示位置:

  引导学生尝试用两个数来表示某个同学的位置,如(4,3)表示第4列第3行。

  介绍数对的写法:两个数之间用逗号隔开,外面加上小括号。

  强调数对中第一个数表示列,第二个数表示行,顺序不能颠倒。

  通过练习,让学生熟练掌握用数对表示位置的方法。

  巩固应用,拓展延伸:

  引导学生用数对表示自己在教室中的位置,并找出同行或同列的同学的数对。

  设计形式多样的练习题,如瓷砖图、国际象棋棋盘等,让学生用数对表示不同物体的`位置。

  引导学生观察和分析数对中的规律,如同行或同列的数对的特征。

  总结全课,内化知识:

  回顾本节课所学内容,强调数对在确定位置中的应用价值。

  引导学生分享自己的学习体会和收获。

  讲述数学家笛卡尔发明数对的故事,激发学生的数学兴趣和探索精神。

  四、教学准备

  多媒体设备、PPT课件、学习单等教学辅助工具。

  教室座位图或情境图等教学材料。

  五、板书设计

  板书课题:用数对确定位置。

  列出列和行的概念及确定方法。

  展示用数对表示位置的示例和写法。

  呈现学生练习和讨论的结果。

  《用数对确定位置》教学设计 16

  教学目标:

  本节课旨在使学生理解并掌握数对的概念,学会用数对准确描述二维平面中的位置,培养学生的空间想象能力和逻辑思维能力。通过生活实例的引入,激发学生对数学的兴趣,培养学生用数学眼光观察生活的习惯。

  教学重难点:

  重点:理解数对的含义,掌握用数对表示位置的方法。

  难点:正确识别和应用数对,解决生活中的实际问题。

  教学过程:

  导入新课(约5分钟):

  借助教室座位图,提问:“如何快速准确地指出某同学的位置?”引导学生发现现有方法的不足,引出数对概念。

  新知讲授(约15分钟):

  介绍列与行的概念,明确列从左至右,行从前至后。

  演示如何用数对(列,行)表示位置,如(3,4)表示第3列第4行的位置。

  强调数对书写的规范性,即逗号分隔,括号包围。

  实践操作(约15分钟):

  让学生在纸上画出简易座位图,用数对标记自己的位置。

  分组活动,每组随机报出一个数对,其他成员迅速指出对应位置。

  变换情境,如电影院座位、棋盘格子等,练习用数对表示不同情境下的位置。

  巩固提升(约10分钟):

  设计一系列练习题,包括根据数对找位置、根据位置写数对等,检验学生对数对概念的掌握情况。

  引导学生总结数对应用的规律,如同行或同列数对的特点。

  课堂小结(约5分钟):

  回顾本节课学习的内容,强调数对在确定位置中的重要性。

  鼓励学生分享学习心得,提出疑惑。

  教学资源:

  教室座位图、电影院座位图、棋盘格子图等教学辅助材料。

  PPT课件,用于展示数对概念、例题和练习题。

  教学反思:

  本节课通过生活实例引入,有效激发了学生的学习兴趣。实践操作环节增强了学生的.动手能力,巩固了新知。但需注意,在巩固提升阶段,应增加更多与生活紧密相关的练习题,以进一步提升学生的应用能力和解决问题的能力。同时,对于部分学生在数对应用上的混淆,需加强个别指导,确保每位学生都能熟练掌握数对的使用方法。