高二物理知识点总结

时间:2022-11-21 15:13:54 总结范文 我要投稿

高二物理知识点总结15篇

  总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,我想我们需要写一份总结了吧。总结怎么写才不会流于形式呢?下面是小编帮大家整理的高二物理知识点总结,希望能够帮助到大家。

高二物理知识点总结15篇

高二物理知识点总结1

  1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。

  2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。

  3、利用静电放电产生的臭氧、无菌消毒等

  雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的`氮合成为氨,供给植物营养。

  4、防止静电的主要途径:

  (1)避免产生静电。如在可能情况下选用不容易产生静电的材料。

  (2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。

高二物理知识点总结2

  易错点1对基本概念的理解不准确

  易错分析:要准确理解描述运动的基本概念,这是学好运动学乃至整个动力学的基础.可在对比三组概念中掌握:①位移和路程:位移是由始位置指向末位置的有向线段,是矢量;路程是物体运动轨迹的实际长度,是标量,一般来说位移的大小不等于路程;②平均速度和瞬时速度,前者对应一段时间,后者对应某一时刻,这里特别注意公式只适用于匀变速直线运动;③平均速度和平均速率:平均速度=位移/时间,平均速率=路程/时间.

  易错点2不能把图像的物理意义与实际情况对应

  易错分析:理解运动图像首先要认清v-t和x-t图像的意义,其次要重点理解图像的几个关键点:①坐标轴代表的物理量,如有必要首先要写出两轴物理量关系的表达式;②斜率的意义;③截距的意义;④“面积”的意义,注意有些面积有意义,如v-t图像的“面积”表示位移,有些没有意义,如x-t图像的面积无意义.

  易错点3分不清追及问题的临界条件而出现错误

  易错分析:分析追及问题的方法技巧:①要抓住一个条件,两个关系.一个条件:即两者速度相等,它往往是物体间能否追上或(两者)距离、最小的临界条件,也是分析判断的切入点;两个关系:即时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口.②若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动.③应用图像v-t分析往往直观明了.

  易错点4对摩擦力的认识不够深刻导致错误

  易错分析:摩擦力是被动力,它以其他力的存在为前提,并与物体间相对运动情况有关.它会随其他外力或者运动状态的变化而变化,所以分析时,要谨防摩擦力随着外力或者物体运动状态的变化而发生突变.要分清是静摩擦力还是滑动摩擦力,只有滑动摩擦力才可以根据来计算Fμ=μFN,而FN并不总等于物体的重力.

  易错点5对杆的弹力方向认识错误

  易错分析:要搞清楚杆的弹力和绳的弹力方向特点不同,绳的拉力一定沿绳,杆的弹力方向不一定沿杆.分析杆对物体的弹力方向一般要结合物体的运动状态分析.

  易错点6不善于利用矢量三角形分析问题

  易错分析:平行四边形(三角形)定则是力的运算的常用工具,所以无论是分析受力情况、力的可能方向、力的最小值等,都可以通过画受力分析图或者力的矢量三角形.许多看似复杂的问题可以通过图示找到突破口,变得简明直观.

  易错点7对力和运动的关系认识错误

  易错分析:根据牛顿第二定律F=ma,合外力决定加速度而不是速度,力和速度没有必然的联系.加速度与合外力存在瞬时对应关系:加速度的方向始终和合外力的方向相同,加速度的大小随合外力的增大(减小)而增大(减小);加速度和速度同向时物体做加速运动,反向时做减速运动.力和速度只有通过加速度这个桥梁才能实现“对话”,如果让力和速度直接对话,就是死抱亚里干多德的观点永不悔改的“顽固派”.

  易错点8不会处理瞬时问题

  易错分析:根据牛顿第二定律知,加速度与合外力的瞬时对应关系.所谓瞬时对应关系是指物体受到外力作用后立即产生加速度,外力恒定,加速度也恒定,外力变化,加速度立即发生变化,外力消失,加速度立即消失,在分析瞬时对应关系时应注意两个基本模型特点的区别:(1)轻绳模型:①轻绳不能伸长,②轻绳的拉力可突变;(2)轻弹簧模型:①弹力的大小为F=kx,其中k是弹簧的劲度系数,x为弹簧的形变量,②弹力突变的特点:若释放未连接物体,则轻弹簧的弹力可突变为零;若释放端仍连重物,则轻弹簧的弹力不发生突变,释放的瞬间仍为原值.易错点9不理解超、失重的实质

  易错分析:要头透彻理解对超重和失重的实质,超失重与物体的速度无关,只取决于加速度情况.物体具有竖直向上的加速度或具有竖直向上的分加速度,失重时,物体具有竖直向下的加速度或有竖直向下的分加速度.处于超重或失重状态的物体仍受重力,只是视重(支持力或拉力)大于或小于重力,处于完全失重状态的物体,视重为零

  易错点10找不到两物体间的运动联系而出错

  易错分析:动力学的中心问题是研究运动和力的关系,除了对物体正确受力分析外,还必须正确分析物体的运动情况.当所给的情境中涉及两个物体,并且物体间存在相对运动时,找出这两物体之间的位移关系或速度关系尤其重要,特别注意物体的位移都是相对地的位移,故物块的位移并不等于木板的长度.一般地,若两物体同向运动,位移之差等于木板长;反向运动时,位移之和等于木板长

  易错点16不能正确理解各种功能关系

  易错分析:应用功能关系解题时,首先要弄清楚各种力做功与相应能变化的关系,重要的功能关系有:①重力做功等于重力势能变化的负值,即WG=-△Ep;②合力对物体所做的功等于物体动能的变化,即动能定理W合=△Ek;③除重力(或弹簧弹力)以外的力所做的功等于物体机械能的变化,即W'其它=△E机;④当W其它=0时,说明只有重力做功,所以系统的机械能守恒;⑤系统克服滑动摩擦力做功的代数和等于机械能转化的内能,即f?d=Q(d为这两个物体间相对移动的路程)。

  易错点17对简谐运动的运动学特征把握不准

  易错分析振动具有周期性和对称性,可以结合振动图像加深理解和记忆:⑴相隔半个周期或的两个时刻对应的弹簧振子位置相对于平衡位置对称,相对于平衡位置的位移等大反向,两时刻的速度也等大反向;⑵相隔的两个时刻弹簧振子在同一位置,位移和速度都相等.简谐运动的回复力:当振子做直线运动时(如弹簧振子),简谐运动的回复力是振子所受合外力,当振子做曲线运动(如单摆)时,简谐运动的回复力是振子所受合外力沿振动方向的分量,且都满足,是振子相对于平衡位置的位移.

  易错点18不理解波的形成原理和过程

  易错分析对于机械波,从整体上看是波,从局部或具体某个质点看又是振动,波是相邻质点的依次带动而形成的,波的传播过程实际上是前一质点带动后一质点振动的过程,因此介质中各质点做的都是受迫振动,它们的振动频率都与波源的频率相同,也就是波的频率。波的传播过程中实际上传播的是波源的振动能量和振动形式,介质中各质点只是在自己的平衡位置附近来回振动,质点本身并不随波迁移。当一个质点完成一个周期振动时,波在沿波的传播方向上恰好传播了一个波长的距离。所有质点起始振动的方向都与第一个质点(波源)起始振动的方向相同。也就是沿着波的传播方向,后面所有质点开始振动的方向都与第一个质点开始振动的方向相同。同时沿着波的传播方向,各质点的振动步调依次落后。

  易错点19忽视波的周期性和双向性造成漏解

  易错分析机械波的波速只与介质有关,在相同介质中波速相等,在介质中可沿各个方向传播,但中学物理中一般只讨论在一条直线上传播的问题,仅限于两个方向,即波传播的双向性.不能由质点先后顺序(如)来判断波的传播方向,也不能由图像的实、虚线来判断振动的先后,要注意波传播的双向性,以防漏解.

  易错点21对基本概念、电场的性质理解不透彻、掌握不牢

  易错分析电势具有相对意义,理论上可以任意选取零势能点,因此电势与场强是没有直接关系的;电场强度是矢量,空间同时有几个点电荷,则某点的场强由这几个点电荷单独在该点产生的场强矢量叠加;电荷在电场中某点具有的电势能,由该点的电势与电荷的电荷量(包括电性)的乘积决定,负电荷在电势越高的点具有的电势能反而越小;带电粒子在电场中的运动有多种运动形式,若粒子做匀速圆周运动,则电势能不变.

  易错点22不熟悉电场线和等势面与电场特性的关系

  易错分析要熟练掌握电场线和等势面的分布特征与电场特性的关系,特别注意:⑴电场线总是垂直于等势面;⑵电场线总是由电势高的等势面指向电势低的等势面.同时,对的应用,一定要清楚:⑴在匀强电场中,可以用此公式来进行定量计算,其中d是沿场强方向两点间距离;⑵在非匀强电场中,该式不能用于计算,但可以用微元法判断比较两点间电势差.

  易错点23匀强电场中场强与电势差的关系、电场力做功与电势能变化的关系不明确

  易错分析在由电荷电势能变化和电场力做功判断电场中电势、电势差和场强方向的问题中,先由电势能的变化和电场力做功判断电荷移动的各点间的电势差,再由电势差的比较判断各点电势高低,从而确定一个等势面,最后由电场线总是垂直于等势面确定电场线的方向.由此可见,电场力做功与电荷电势能的变化关系具有非常重要的意义,并注意计算时一定同时代入表示电荷电性和电势高低关系的“+、-”号.易错点24对带电粒子在匀强电场中的偏转的特点掌握不准确

  易错分析带电粒子在极板间的偏转可分解为匀速直线运动和匀加速直线运动,我们处理此类问题时要注意平行板间距离的变化时,若电压不变,则极板间场强发生变化,加速度发生变化,这时不能盲目地套用公式,而应具体问题具体分析.

  易错点25对电容器的动态分析不全面

  易错分析在解电容器类问题时要注意两板带电荷量、电压、场强、板间某点的电势是如何随两板间的'距离发生变化的,同时要注意电势的高低以及板是否接地.

  易错点26对闭合电路的动态分析程序不熟悉,方法不熟练

  易错分析闭合电路的动态分析一定要严格按“局部→整体→局部”的程序进行.对局部,要判断电阻如何变化,从而判断总电阻如何变化.对整体,首先是由判断干路电流回路随总电阻增大而减小,然后由闭合电路欧姆定律得路端电压随总电阻增大而增大.第二个局部是重点,也是难点.需要根据串、并联电路的特点和规律及欧姆定律交替判断.

  易错点27伏安特性曲线的意义不明确

  易错分析要准确理解概念,不能把不同情境下的情况随意迁移到另一情境.电阻的定义式R=,当电阻R不变时,也有R=,但当电阻发生变化时则必须依据电阻定义式求电阻,即对应图像上某一点的电阻等于那一点的电压U与电流I的比值.

  易错点28对闭合电路输出功率的条件适用对象不明确、掌握不到位

  易错分析电源输出功率的条件是当电源或等效电源内阻一定时才成立的,因此不能将可变外电阻当作电源内阻的一部分来判断电源的输出功率是否,也就是说,条件外电阻只能用于外电阻可变电源内阻恒定时输出功率的判断.

  易错点29非纯电阻电路的主要特点与纯电阻电路的电功和电热计算相混淆

  易错分析在纯电阻电路中,,同时由于欧姆定律成立,有;在非纯电阻电路中,,但由于欧姆定律不成立,,,电热.综上所述,在任何电路中都成立,因此计算时一定先要判断电路性质:是否为纯电阻电路,然后选用合适的规律进行判断或计算.能量转化与守恒定律是自然界中普遍适用的规律,我们在分析非纯电阻电路时还要注意从能量转化与守恒看电路各个部分的作用,从全局的角度把握一道题的解题思路.

  易错点30不清楚回旋加速器的原理

  易错分析以回旋加速器、磁流体发电机、速度选择器、质谱仪等模型为载体考查带电粒子在复合场中的运动的试题在高考中曾多次出现,要理解这些常见模型的原理.理解回旋加速器的原理需突破两点:①粒子离开磁场的动能与加速电压无关,由知,只取决于磁场的半径R和磁感应强度B的大小以及粒子本身的质量和电荷量;②粒子做圆周运动的周期等于交变电场的周期,由知,要加速不同的粒子需调整B和f.

  易错点30不会处理带电粒子在有界磁场中运动的临界问题

  易错分析解带电粒子在有界磁场中的临界问题时要注意寻找临界点、对称点,射出与否的临界点是带电粒子的圆形轨迹与边界切点;粒子进、出同一直线边界时具有对称关系:速度与直线的夹角相等但在直线两侧,顺、逆时针偏转的两段圆弧构成一个完整的圆.注意粒子在不同边界的磁场以及磁场内外运动的不同,边界有磁场与无磁场的不同.

高二物理知识点总结3

  开普勒三定律

  1.开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

  说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

  2.开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;

  3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;

  公式:R3/T2=K;

  说明:

  (1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;

  (2)当把行星的轨迹视为圆时,R表示愿的半径;

  (3)该公式亦适用与其它天体,如绕地球运动的卫星;

  万有引力定律

  自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。

  1.计算公式

  F:两个物体之间的引力

  G:万有引力常量

  M1:物体1的质量

  M2:物体2的质量

  R:两个物体之间的距离

  依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于

  6.67×10^-11N·m^2/kg^2(牛顿平方米每二次方千克)。

  2.解决天体运动问题的思路:

  (1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;

  (2)应用在地球表面的`物体万有引力等于重力;

  (3)如果要求密度,则用:m=ρV,V=4πR3/3

  机械能

  功

  功等于力和物体沿力的方向的位移的乘积;

  1.计算公式:w=Fs;

  2.推论:w=Fscosθ,θ为力和位移间的夹角;

  3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

  功率

  功率是表示物体做功快慢的物理量。

  1.求平均功率:P=W/t;

  2.求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;

  3.功、功率是标量;

  功和能之间的关系

  功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

  动能定理

  合外力做的功等于物体动能的变化。

  1.数学表达式:w合=mvt2/2-mv02/2

  2.适用范围:既可求恒力的功亦可求变力的功;

  3.应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;

  4.应用动能定理解题的步骤:

  (1)对物体进行正确的受力分析,求出合外力及其做的功;

  (2)确定物体的初态和末态,表示出初、末态的动能;

  (3)应用动能定理建立方程、求解

  重力势能

  物体的重力势能等于物体的重量和它的速度的乘积。

  1.重力势能用EP来表示;

  2.重力势能的数学表达式:EP=mgh;

  3.重力势能是标量,其国际单位是焦耳;

  4.重力势能具有相对性:其大小和所选参考系有关;

  5.重力做功与重力势能间的关系

  (1)物体被举高,重力做负功,重力势能增加;

  (2)物体下落,重力做正功,重力势能减小;

  (3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

高二物理知识点总结4

  1.光敏电阻

  2.热敏电阻和金属热电阻

  3.电容式位移传感器

  4.力传感器————将力信号转化为电流信号的元件.

  5.霍尔元件

  霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件.

  外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的'另一侧会出现多余的另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压.

高二物理知识点总结5

  一、电磁波的发现

  1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:

  (1)均匀变化的磁场产生稳定电场

  (2)非均匀变化的磁场产生变化电场

  2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:

  (1)均匀变化的电场产生稳定磁场

  (2)非均匀变化的电场产生变化磁场

  3、麦克斯韦电磁场理论的理解:

  恒定的电场不产生磁场

  均匀变化的电场在周围空间产生恒定的磁场

  振荡磁场产生同频率的振荡电场

  4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的'磁场是相互联系着的,形成不可分割的统一体,这就是电磁场。

  5、电磁波:电磁场由发生区域向远处的传播就是电磁波。

  6、电磁波的特点:

  (1)电磁波是横波,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均与波的传播方向垂直。

  (2)电磁波可以在真空中传播,速度和光速相同、v=λf

  (3)电磁波具有波的特性

  7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象、,他还测量出电磁波和光有相同的速度、这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历首先捕捉到了电磁波。

高二物理知识点总结6

  牛顿运动定律的应用

  1、运用牛顿第二定律解题的基本思路

  (1)通过认真审题,确定研究对象。

  (2)采用隔离体法,正确受力分析。

  (3)建立坐标系,正交分解力。

  (4)根据牛顿第二定律列出方程。

  (5)统一单位,求出答案。

  2、解决连接体问题的基本方法是:

  (1)选取的研究对象。选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法。一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究。

  (2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案。

  3、解决临界问题的基本方法是:

  (1)要详细分析物理过程,根据条件变化或随着过程进行引起的`受力情况和运动状态变化,找到临界状态和临界条件。

  (2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件。

  易错现象:

  (1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。

  (2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。

  (3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的静摩擦力。

高二物理知识点总结7

  高二上学期物理知识点:静电场

  1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍。

  2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的`负值)

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106μF=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

  (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

  高二上学期物理知识点:恒定电流

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

  3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

  9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+

  高二上学期物理知识点:磁场

  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

  2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

  3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

  注:

  (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

  (2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

  高二理科物理知识点:电场

  1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

  10.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  11.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

高二物理知识点总结8

  一、焦耳定律

  1、定义:电流流过导体产生的热量跟电流的平方、导体的电阻和通电时间成正比。

  2、意义:电流通过导体时所产生的电热。

  3、适用条件:任何电路。

  二、电阻定律

  1、电阻定律:在一定温度下,导体的电阻与导体本身的长度成正比,跟导体的横截面积成反比。

  2、意义:电阻的`决定式,提供了一种测电阻率的方法。

  3、适用条件:适用于粗细均匀的金属导体和浓度均与的电解液。

  三、欧姆定律

  1、欧姆定律:导体中电流I跟导体两端的电压U成正比,跟它的电阻R成反比。

  2、意义:电流的决定式,提供了一种测电阻的方法。

  3、适用条件:金属、电解液(对气体不适用)。适用于纯电阻电路。

  四、库伦定律

  五、电阻率

  1、意义:电阻率是反映导体材料导电性能的物理量。材料导电性能的好坏用电阻率p表示,电阻率越小,导电性能越好,电阻率越大,表明在相同长度,相同横截面积的情况下,导体电阻就越大。

  2、决定因素:由材料的种类和温度决定,与材料的长短、粗细无关。一般常用合金的电阻率大于组成它的纯金属的电阻率。

  3、与温度的关系:各种材料的电阻率都随温度的变化而变化。金属的电阻率随温度的升高而增大(可用于制造电阻温度计);半导体和电介质的电阻率随温度的升高而减小(半导体的电阻率随温度的变化较大,可用于制造热敏电阻)。

高二物理知识点总结9

  【磁场】

  1、磁场是一种物质2、磁场方向:小磁针静止时N极的指向,磁感线上某点的切线方向。

  3、磁场的基本特性:对放入其中的磁体、电流和运动电荷有力的作用。

  4、磁现象的电本质:磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。

  5、磁感线:定义,特点。磁铁:外部从北极到南极,内部从南极到北极。

  6、熟悉五种典型磁场的磁感线空间分布,会转化成不同方向的'平面图(正视、俯视、侧视、剖视图)

  7、安培定则(右手螺旋定则)要点。

  8、磁感应强度:B定义,方向,单位。牢记地磁场分布的特点。

  【磁场力】

  1、安培力:⑴对象:磁场对电流的作用力。

  ⑵大小:F安=BIL(注意适用条件)普遍式:F=BILsinθ。

  ⑶方向:左手定则。要点:四指:电流方向,大拇指:安培力方向

  2、洛仑兹力:⑴对象:磁场对运动电荷的作用力。

  ⑵大小:f洛=qvB(注意适用条件)普遍式:f洛=qvBsinθ

  ⑶方向:左手定则。要点:四指:正电荷运动的方向,大拇指:洛伦兹力方向

  ⑷注意:洛伦兹力时刻与速度方向垂直,且指向圆心。时刻垂直v与B决定的平面,所以洛伦兹力不做功。

  高二物理知识点归纳整合精选5篇最新

高二物理知识点总结10

  1、定义:运动轨迹为曲线的运动。2、物体做曲线运动的方向:

  做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。3、曲线运动的性质

  由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

  由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的`合外力必不为零。4、物体做曲线运动的条件(1)物体做一般曲线运动的条件

  物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。(2)物体做平抛运动的条件

  物体只受重力,初速度方向为水平方向。

  可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。(3)物体做圆周运动的条件

  物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)

  总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。5、分类

  ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。

  ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。

高二物理知识点总结11

  1、晶体

  晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。

  非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。

  ①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。

  ②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。

  2、单晶体多晶体

  如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。

  如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。

  3、晶体的微观结构:

  固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。

  晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的'排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。

  4、表面张力

  当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。

  (1)作用:液体的表面张力使液面具有收缩的趋势。

  (2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。

  (3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。

  5、液晶

  分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。

  各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。

  6、饱和汽;湿度

  (1)饱和汽:与液体处于动态平衡的蒸汽.

  (2)未饱和汽:没有达到饱和状态的蒸汽.

  (3)饱和汽压

  ①定义:饱和汽所具有的压强。

  ②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。

  (4)湿度

  ①定义:空气的干湿程度。

  ②描述湿度的物理量

  a.绝对湿度:空气中所含水蒸气的压强。

  b.相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比。

  c.相对湿度公式:

  7、改变系统内能的两种方式:做功和热传递

  ①热传递有三种不同的方式:热传导、热对流和热辐射。

  ②这两种方式改变系统的内能是等效的。

  ③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移。

高二物理知识点总结12

  1、动量:可以从两个侧面对动量进行定义或解释:

  ①物体的质量跟其速度的乘积,叫做物体的动量。

  ②动量是物体机械运动的一种量度。

  动量的表达式P=mv。单位是。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。

  2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

  运用动量守恒定律要注意以下几个问题:

  ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

  ②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。

  ③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

  ④动量是矢量,因此“系统总动量”是指系统中所有物体动量的`矢量和,而不是代数和。

  ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

  ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

高二物理知识点总结13

  电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。

  1、原因

  电势能,电场力,功的关系与重力势能,重力,功的关系很相似。

  E=mgh,重力做正功,重力势能减小。

  电势能的.原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。

  静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量

  2、判断电场力做功的方法

  (1)看电场力与带电粒子的位移方向夹角,小于90度为正功,大于90度为负功;

  (2)看电场力与带电粒子的速度方向夹角,小于90度为正功,大于90度为负功;

  (3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。

高二物理知识点总结14

  三种产生电荷的方式:

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

  4、电荷的基本性质:能吸引轻小物体;

  (1)电荷间相互作用规律:自然界中只有两种电荷,即正电荷和负电荷、同种电荷相互排斥、异种电荷相互吸引。

  (2)三种起电方法:

  ①摩擦起电:当两个物体相互摩擦时,一些束缚得不紧的电子从一个物体转移到另一个物体,于是原来电中性的物体由于得到电子而带负电,失去电子的`物体则带正电。

  ②感应起电:利用静电感应使金属导体带电的过程

  ③接触起电:一个物体带电时,电荷之间会相互排斥,如果接触另一个导体,电荷会转移到这个导体上,使物体带电。

  (3)电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分:在转移过程中,电荷的总量保持不变。

  (4)元电荷:最小电荷量就是电子所带的电荷量,这个最小的电荷量叫做元电荷。

高二物理知识点总结15

  一、原子结构知识点:

  1、电子的发现和汤姆生的原子模型:

  (1)电子的发现:

  1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

  电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

  (2)汤姆生的原子模型:

  1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

  2、α粒子散射实验和原子核结构模型

  (1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成

  ①装置:

  ② 现象:

  a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

  b. 有少数α粒子发生较大角度的偏转

  c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

  (2)原子的核式结构模型:

  由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

  1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的.核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

  原子核半径小于10-14m,原子轨道半径约10-10m。

  3、玻尔的原子模型

  (1)原子核式结构模型与经典电磁理论的矛盾(两方面)

  a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

  b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

  (2)玻尔理论

  上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

  ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

  ②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1

  ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即

  n为正整数,称量数数

  (3)玻尔的氢子模型:

  ①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

  氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:

  其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)

  ②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

  其中n=1的定态称为基态。n=2以上的定态,称为激发态。

  二、原子核知识点

  1、天然放射现象

  (1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

  放射性:物质能发射出上述射线的性质称放射性

  放射性元素:具有放射性的元素称放射性元素

  天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象

  天然放射现象:表明原子核存在精细结构,是可以再分的

  (2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:

  2、原子核的衰变:

  (1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒

  γ射线是伴随α、β衰变放射出来的高频光子流

  在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子

  (2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

  一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m

  3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

  (1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。

  (2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。

  4、原子核的组成和放射性同位素

  (1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子

  在原子核中:

  质子数等于电荷数

  核子数等于质量数

  中子数等于质量数减电荷数

  (2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

  正电子的发现:用α粒子轰击铝时,发生核反应。

  发生+β衰变,放出正电子

  三、核能知识点:

  1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。

  2、质能方程:爱因斯坦提出物体的质量和能量的关系:

  E=mc2——质能方程

  3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。

  吸收或放出的能量,与质量变化的关系为:

  为了计算方便以后在计算核能时我们用以下两种方法

  方法一:若已知条件中以千克作单位给出,用以下公式计算

  公式中单位:

  方法二:若已知条件中以作单位给出,用以下公式计算

  公式中单位:

  4、释放核能的途径——裂变和聚变

  (1)裂变反应:

  ①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

  ②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

  链式反应的条件:

  ③裂变时平均每个核子放能约1Mev能量

  1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量

  (2)聚变反应:

  ①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。

  ②平均每个核子放出3Mev的能量

  ③聚变反应的条件;几百万摄氏度的高温

【高二物理知识点总结】相关文章:

物理高二知识点总结11-02

高二物理知识点总结11-21

高二物理知识点总结08-10

高二物理知识点总结归纳09-10

高二物理上册知识点总结11-22

高二物理知识点总结15篇08-10

高二物理知识点总结归纳12篇10-14

高二物理知识点总结归纳(12篇)10-14

高二物理知识点总结归纳集锦12篇10-14