八年级数学下册知识点总结

时间:2022-11-24 20:53:38 总结范文 我要投稿
  • 相关推荐

八年级数学下册知识点总结范文

  总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以帮助我们有寻找学习和工作中的规律,为此要我们写一份总结。那么如何把总结写出新花样呢?下面是小编整理的八年级数学下册知识点总结范文,希望能够帮助到大家。

八年级数学下册知识点总结范文

八年级数学下册知识点总结范文1

  数学数轴知识点

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  初一数学概念知识点复习

  1、单项式:数字与字母的积,叫做单项式。

  2、多项式:几个单项式的和,叫做多项式。

  3、整式:单项式和多项式统称整式。

  4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

  5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

  6、余角:两个角的和为90度,这两个角叫做互为余角。

  7、补角:两个角的和为180度,这两个角叫做互为补角。

  8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

  9、同位角:在“三线八角”中,位置相同的角,就是同位角。

  10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

  11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

  12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

  13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

  14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的.顶点与交点之间的线段叫做三角形的角平分线。

  16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

  17、全等图形:两个能够重合的图形称为全等图形。

  18、变量:变化的数量,就叫变量。

  19、自变量:在变化的量中主动发生变化的,变叫自变量。

  20、因变量:随着自变量变化而被动发生变化的量,叫因变量。

  21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

  22、对称轴:轴对称图形中对折的直线叫做对称轴。

八年级数学下册知识点总结范文2

  二次根式

  1.一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的`值为纯虚数。

  2.二次根式的加减法

  (1)同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

  (2)合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  (3)二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

  3.二次根式的乘除法

  二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根式

八年级数学下册知识点总结范文3

  整式

  1.整式:整式为单项式和多项式的统称,是有理式的'一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

  2.乘法

  (1)同底数幂相乘,底数不变,指数相加。

  (2)幂的乘方,底数不变,指数相乘。

  (3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

  3.整式的除法

  (1)同底数幂相除,底数不变,指数相减。

  (2)任何不等于零的数的零次幂为1。

八年级数学下册知识点总结范文4

  1)分式混合运算法则:

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简.

  2)分式方程的增根问题

  (1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知

  数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现

  不适合原方程的根---增根;

  (2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.

  列分式方程基本步骤

  ①审-仔细审题,找出等量关系。

  ②设-合理设未知数。

  ③列-根据等量关系列出方程(组)。

  ④解-解出方程(组)。注意检验

  ⑤答-答题。

  3)解分式方程的基本步骤

  ⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

  ⑵解整式方程,得到整式方程的解。

  ⑶检验,把所得的整式方程的解代入最简公分母中:

  如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

  产生增根的条件是:

  ①是得到的整式方程的解;

  ②代入最简公分母后值为0。

  4)分式的基本性质:

  分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  即,(C≠0),其中A、B、C均为整式。分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

  约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的.公因式约去,这种变形称为分式的约分。

  5)分式的约分步骤:

  (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;

  (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

  6)分式的运算:

  1.分式的加减法法则:

  (1)同分母的分式相加减,分母不变,把分子相加;

  (2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。

  2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

  3.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。

  4.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。

  约分的方法和步骤包括:

  (1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的公约数的积;

  (2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。

  7)通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。

  分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。

  (1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的次幂的所有不同字母的积;

  (2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;

  (3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;

  (4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。

  8)注意:

  (1)分式的约分和通分都是依据分式的基本性质;

  (2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。

  (3)约分时,分子与分母不是乘积形式,不能约分.

  3.求最简公分母的方法是:

  (1)将各个分母分解因式;

  (2)找各分母系数的最小公倍数;

  (3)找出各分母中不同的因式,相同因式中取次数的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。

  运算符号

  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

  基本函数有哪些

  正弦:sine余弦:cosine(简写cos)

  正切:tangent(简写tan)

  余切:cotangent(简写cot)

  正割:secant(简写sec)

  余割:cosecant(简写csc)

八年级数学下册知识点总结范文5

  勾股定理

  内容:直角三角形两直角边的平方和等于斜边的平方;

  表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.

  勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。

  勾股定理的证明

  勾股定理的证明方法很多,常见的是拼图的方法

  用拼图的方法验证勾股定理的思路是

  ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

  ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

  勾股定理的适用范围

  勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

  勾股定理的逆定理

  如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.

  ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若,时,以a,b,c为三边的三角形是钝角三角形;若,时,以a,b,c为三边的三角形是锐角三角形;

  ②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边.

  ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形

  质数和合数应用

  1、质数与密码学:所谓的`公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

  2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

  数学的方法技巧整理

  预习的方法

  上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。

  听懂课的习惯

  注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

  不断练习

  不断练习是指多做数学练习题。希望学好数学,多做练习是必不可少的。做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独立做题的水平;第三,融会贯通。通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。

  及时小结,温故知新

  一要进行复习小结,及时再现当天或本单元所学的知识;二要积累资料进行整理。可将平时作业、小测验中技巧性强的、易错的题目及时收集成册——错题本,便于复习时参考。

八年级数学下册知识点总结范文6

  1、定义:形如y=(k为常数,k≠0)的函数称为反比例函数。

  2、其他形式xy=k(k为常数,k≠0)都是。

  3、图像:反比例函数的图像属于双曲线。

  反比例函数的图象既是轴对称图形又是中心对称图形。

  有两条对称轴:直线y=x和y=—x。对称中心是:原点。

  4、性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

  当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  5、|k|的几何意义:表示反比例函数图像上的点向两坐标轴

  所作的垂线段与两坐标轴围成的矩形的面积。

  勾股定理

  1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  2、勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  3、经过证明被确认正确的命题叫做定理。

  我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  四边形

  平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

  平行四边形的性质:平行四边形的对边相等;

  平行四边形的对角相等。

  平行四边形的对角线互相平分。

  平行四边形的判定

  1、两组对边分别相等的四边形是平行四边形

  2、对角线互相平分的四边形是平行四边形;

  3、两组对角分别相等的四边形是平行四边形;

  4、一组对边平行且相等的四边形是平行四边形。

  三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的平行四边形。

  矩形的性质:矩形的四个角都是直角;

  矩形的对角线平分且相等。AC=BD

  矩形判定定理:

  1、有一个角是直角的平行四边形叫做矩形。

  2、对角线相等的平行四边形是矩形。

  3、有三个角是直角的四边形是矩形。

  菱形的定义:邻边相等的平行四边形。

  菱形的性质:菱形的四条边都相等;

  菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  菱形的判定定理:

  1、一组邻边相等的平行四边形是菱形。

  2、对角线互相垂直的平行四边形是菱形。

  3、四条边相等的四边形是菱形。

  S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

  正方形判定定理:

  1、邻边相等的矩形是正方形。

  2、有一个角是直角的菱形是正方形。

  梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

  直角梯形的定义:有一个角是直角的梯形

  等腰梯形的定义:两腰相等的梯形。

  等腰梯形的性质:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等。

  等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  解梯形问题常用的辅助线:如图

  线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是(约为0.618)的矩形叫做黄金矩形。

  数据的分析

  1、算术平均数:

  2、加权平均数:加权平均数的计算公式。

  权的理解:反映了某个数据在整个数据中的重要程度。

  而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

  3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  4、一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  5、一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  6、方差越大,数据的.波动越大;方差越小,数据的波动越小,就越稳定。

  数据的收集与整理的步骤:

  1、收集数据

  2、整理数据

  3、描述数据

  4、分析数据

  5、撰写调查报告

  6、交流

  7、平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

  数学学习中常见问题分析

  大部分初二学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先初二新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的初二学生在解答数学题的时候始终不能把握解题技巧,也就是说初二学生缺乏对待数学的举一反三能力。

  还有的初二学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些初二学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致初二学生学不好数学的原因。

  数学学习技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

【八年级数学下册知识点总结】相关文章:

初二数学下册知识点总结11-11

初二数学下册知识点总结04-30

高二数学下册知识点总结08-26

初一数学下册知识点总结11-22

八年级下册生物知识点总结11-15

初一数学下册重点知识点总结12-26

八年级地理下册重要知识点总结02-06

生物下册知识点总结03-02

八年级下册生物知识点总结15篇11-15