四年级下册数学知识点总结
在日复一日的学习中,大家对知识点应该都不陌生吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。相信很多人都在为知识点发愁,下面是小编整理的四年级下册数学知识点总结,仅供参考,希望能够帮助到大家。
第一单元四则运算
1、在没有括号的算式里,如果只有加、减法,那么从左往右按顺序计算。
2、在没有括号的算式里,如果只有乘、除法,那么从左往右按顺序计算。
3、在没有括号的算式里,既有加、减法,又有乘、除法,那么先算乘、除法,再算加、减法。
4、在有括号的算式里,先算括号里的算式,再算括号外面的算式。
5、有关0的计算:
(1)零加上任何数得原数。[0+5=5,8+0=8]
(2)被减数等于减数,差为0。[5-5=0,7-7=0]
(3)0与任何数相乘得0。[0×5=0,0×24=0]
(4)0除于任何非0的数得0。[0÷18=0,0÷29=0]
(5)0不能做除数。
第二单元位置与方向
1、地图的三要素:图例、方向、比例尺。
2、确定方向时:
A、先确定观测点
(1)从那里出发,那里就是观测点。例如:从渡口出发,到钟山。(渡口就是观测点)
(2)“在”字后面的为观测点。例如:渡口在钟山的方向上。(钟山就是观测点)B站在观测点来看方向。(A偏B,A就是(“偏”字前面的)标角度的角靠近的方向{东、南、西、北}。
例如:①东偏南25°(标25°的那个角就靠近东)②西偏北35°(标35°的那个角就靠近西)
3、描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。
4、常用的八个方位:东、南、西、北、东南、东北、西南、西北。
观测点与被观测点对调,那么方向是原方向的相对方向,如:东与西相对,南与北相对。
5、小红家在学校的东偏南20°方向,距离120米处学校在小红家的西偏北20°方向,距离120米处第三单元运算定律与简便计算一、运算定律
1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。
3、乘法交换律:a×b=b×a交换因数的位置积不变。
4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
二、简便计算
1、连加的简便计算:
①使用加法结合律(把和是整十、整百、整千的数结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2、连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。如:106-(26+74)=106-26-743、加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38-23=123-23+38146-78+54=146+54-784、连乘的简便计算:
使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;
3、连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
4、乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×137、乘法分配律的应用:
①类型一:(a+b)×c(a-b)×c
=a×c+b×c=a×c-b×c
②类型二:a×c+b×ca×c-b×c=(a+b)×c=(a-b)×c
③类型三:a×99+aa×b-a=a×(99+1)=a×(b-1)
④类型四:a×99a×102=a×(100-1)=a×(100+2)=a×100-a×1=a×100+a×2第四单元小数的意义和性质
1、小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000的分数可以用(小数)表示。
3、小数的计数单位是十分之一、百分之一、千分之一分别写作0.1、0.01、0.001
4、每相邻两个计数单位间的进率是(十)。
5、数位顺序表整数部分小数点小数部分数位千位百位十位个位十分百分千分万分位位位位计数个.十分百分千分万分单位千百十(一)之一之一之一之一例如
(1)6.378的计数单位是0.001。
(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),和8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]
6、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
7、小数的大小比较:
(1)统一单位。(统一成一样的单位)
(2)把要比较的数写成一列(小数点必须对齐)
(3)先比较整数部分;整数部分相同,就比较十分位;十分位相同,比较百分位;百分位相同,就比较千分位
8、小数点的移动:
小数点向右移动小数就扩大到原数的乘一位10倍×10两位100倍×100
三位1000倍×1000
小数点向左移动小数就缩小到原数的除以
一位1÷10
10两位1÷100
100三位1÷1000
1000
9、单位换算:
(1)高级单位转化成低级单位===乘进率,小数点向右移动。
(2)低级单位转化成高级单位===除以进率,小数点向左移动。
10、求小数的近似数
方法:“四舍五入”法
(1)①保留整数,表示精确到个位,看十分位;
②保留一位小数,表示精确到十分位,看百分位;
③保留两位小数,表示精确到百分位,看千分位;
(2)改写成“万”作为单位的数:在万位的右下角,点上小数点,在数的后面加上“万”字。(先划数级线)
(3)改写成“亿”作为单位的数:在亿位的右下角,点上小数点,在数的后面加上“亿”字。(先划数级线)
(4)在表示近似数时,小数末尾的“0”不能去掉。
11、进率:1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米=1000毫米
1千克=1000克1吨=1000千克
1平方米=100平方分米1平方分米=100平方厘米1平方千米=100公顷1平方米=10000平方厘米1公顷=10000平方米1平方千米=1000000平方米
第五单元三角形
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、三角形有3个角、3条边、3个顶点。
3、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。
4、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
5、三角形具有稳定性。
6、三角形的任意两边的和大于第三边。
7、三角形按角分成:
(1)锐角三角形(三个内角都是锐角的三角形)
(2)直角三角形(有一个角是直角的三角形)
(3)钝角三角形(有一个角是钝角的三角形)
8、三角形按边分成:
(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;
有两个角相等,相等的两个角叫做底角。)
(2)等边三角形(三边相等,三个内角相等都是60°)
(3)一般三角形
9、三角形中只能有一个直角;三角形中只能有一个钝角;
三角形中至少有两个锐角,最多有三个锐角。
10、三角形的内角和是180°。
11、最少用2个相同直角三角形可以拼一个平行四边形。
最少用3个相同等边三角形可以拼一个梯形。
最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。
12、无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。
第六单元小数的加法和减法
1、小数加法、减法:
(1)把数位(小数点)对齐。
(2)加减和整数的加减一样。
2、小数加法、减法的简便计算:
(1)可使用加法交换律,加法结合律进行简便计算。
(2)连续减去两个数等于减去这两个数的和。
(3)加法、减法混合在一起时,可以先加,也可以先减,看先干什么更简单。
例如:
(1)5.6+2.7+4.4
(2)9.14+1.43+4.57=(5.6+4.4)+2.7=9.14+(1.43+4.57)
(3)51.27-8.66-1.34
(4)4.02-3.5+0.98=51.27-(8.66+1.34)=4.02+0.98-3.5
第七单元折线统计图
1、折线统计图的特点:
(1)可以看出数量的多少。
(2)可以看出变化趋势。
2、常用增加(上升)与减少(降低)来描述变化趋势。
第八单元数学广角(植树问题)
一、1.两头(两端)要栽:棵数=间隔数+1
2.一头(一端)要栽:棵数=间隔数
3.两头(两端)不栽:棵数=间隔数-1
二、棋盘棋子数目:
1、棋盘最外层棋子数:每边棋子数×边数-边数
2、棋盘总的棋子数:每行棋子数×每列棋子数
3、方阵最外层人数:每边人数×4-4
4、多边形上摆花盆:每边摆的花盆数×边数-边数
【扩展】
数级分类
(1)四位分级法:即以四位数为一个数级的分级方法。
我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。
(2)三位分级法:即以三位数为一个数级的分级方法。
这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。
从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。
数的产生:
阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。
角的种类
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
数学100以内的加法和减法知识点
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:
①相同数位对齐;
②从个位加起;
③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
4、和=加数+加数
一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数+差
三、连加、连减和加减混合
1、连加、连减
连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混合
加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。
3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
【四年级下册数学知识点总结】相关文章:
初二数学下册知识点总结07-13
初二数学下册知识点总结11-11
四年级数学下册知识点总结06-24
初一数学下册知识点总结11-22
高一数学下册知识点总结06-23
数学下册第四单元知识点总结06-22
苏教版四年级数学下册知识点总结11-25
高一数学下册考试知识点总结06-23
数学下册第五单元重要知识点总结06-27