数学解题技巧

时间:2022-12-04 08:33:58 科普知识 我要投稿

数学解题技巧(15篇)

数学解题技巧1

  一、答题与心态策略

数学解题技巧(15篇)

  1、做题顺序:一般按照试题顺序做,实在做不出来,可先放一放,先做别的题目,不要在一道题上花费太多的时间,而影响其他题目;极客数学帮特别提醒做题慢的同学,要掌握好时间,力争一次的成功率;做题速度快的同学要注意做题的质量,要细心,不要马虎;

  2、解题方针:考虑各种简便方法解题,选择题、填空题更是如此;

  3、作答要求:考虑到网上阅卷对答题的要求很高,所以在答题前应设计好答案的整个布局,字要大小适中,不要把答案写在规定的区域以外的地方、否则扫描时不能扫到你所写的答案;

  4、心态调整:调整好心理状态,解答习题时,不要浮躁,力争考出最佳水平,极客数学帮在此教大家答题时的两个心态。

  (1)若试题难,遵循“你难我难,我不怕难”的原则,即如果是难题,中考数学中的难题对于大多数考生来说,都是比较难的,可以先放着,把其他简单的题做完了再来攻破,所以不要怀疑自己,得相信自己有攻破的能力;

  (2)若试题易,遵循“你易我易,我不大意”的原则,即不要被简单题带进坑里,越简单越不粗心大意。

  接下来,极客数学帮将分别讲述选择题、填空题、解答题等方面的应试技巧和注意事项:

  二、分题型的应试技巧和注意事项

  1、选择题

  注意选择题要看完所有选项,做选择题可运用各种解题的方法,比如极客数学帮吴小平老师经常提到的直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法),采用淘汰法和代入检验法可节省时间。

  有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,常见的方法如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法)、采用淘汰法和代入检验法可节省时间。

  2、填空题

  (1)注意一题多解的情况。

  (2)注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等;

  (3)要注意是否带单位,表达格式一定是最终化简结果;

  (4)求角、线段的长,实在不会时,可以尝试猜测或度量法。

  3、解答题

  (1)注意规范答题,过程和结论都要书写规范;

  (2)计算题一定要细心,最后答案要最简,要保证绝对正确;

  (3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入;

  (4)解分式方程一定要检验,应用题中也是如此;

  (5)解直角三角形问题,注意交代辅助线的作法,解题步骤、关注直角、特殊角、取近似值时一定要按照题目要求;

  (6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式、注意题目当中的等量关系,是为了构造方程,不等量关系是为了求自变量的取值范围,求出方程的解后,要注意验根,是否符合实际问题,要记着取舍;

  (7)概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率;

  (8)方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。

  (9)求二次函数解析式,第一步要检验,方可解第二步(第一步不能错,一错前功尽弃);

  只清楚了上面的内容还不够,极客数学帮还特地准备了更多注意事项:

  三、更多注意事项:

  1、对于存在性问题,要注意可能有几种情况不要遗漏;

  2、对于动态问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况、要注意点线的对应关系,用局部的变化来反映整体变化,通常利用平行得相似,注意临界状态,临界状态往往是自变量取值的分界线。

  3、注意单位、设未知数、答题的完整;

  4、求字母系数时,注意检验判别式(否则要被扣分);

  5、实际问题要多读题目,注意认真分析,到题目中寻找等量关系,获取信息,不放过任何一个条件(包括括号里的信息),且注意解答完整、尤其注意应用题中的圆弧型实物还是抛物线型的实物、如果是圆弧找圆心,求半径、如果是抛物线建立直角坐标系,求解析式;

  6、注意如果第一步条件少,无从下手时,应认真审题,画草图寻找突破口,才能完成下面几步、注意考虑上步结论或上一步推导过程中的结论;

  7、注意综合题、压轴题要解清楚,答题要完整,尽量不被扣分;

  8、因式分解时,首先考虑提取公因式,再考虑公式法、一定要注意最后结果要分解到不能再分为止;

  9、找规律的题目,要重在找出规律,切忌盲目乱填;若是函数关系,解好一定要检验,包括自变量、若不是函数关系,应寻找指数或其它关系;

  10、面积问题,中考中的面积问题往往是不规则图形,不易直接求解,往往需要借助于面积和与面积差;

  11、对于压轴题,基础好的学生应力争解出每一步,方可取得高分,基础稍差的应会一步解一步,不可留空白、例如:应用题的'题设,存在题的存在一定要回答;

  12、在三角函数的计算中,应把角放到直角三角形中,可以作必要的辅助线、解直角三角形的应用中要熟悉仰角、俯角、坡角、坡度等概念

  13、熟悉圆中常见辅助线的规律,圆中常见辅助线:

  (1)见切线连圆心和切点;

  (2)两圆相交连结公共弦和连心线(连心线垂直平分公共弦);

  (3)两圆相切,作连心线,连心线必过切点;

  (4)作直径,作弦心距,构造直角三角形,应用勾股定理;

  (5)作直径所对的圆周角,把要求的角转化到直角三角形中、

  14、圆柱、圆锥侧面展开图、扇形面积及弧长公式,做圆锥的问题时,极客数学帮建议要抓住下面两点:

  (1)圆锥母线长等于侧面展开图扇形的半径、

  (2)圆锥底面周长等于侧面展开图扇形的弧长、

  15、求解析式:

  (1)正比例函数、反比例函数只要已知一个条件即可;

  (2)一次函数须知两个条件

  (3)二次函数的三种形式:一般式、顶点式

  (4)抛物线的顶点坐标、对称轴

  16、反证法第一步应假设与结论相反的情况;

  17、与对称图形有关的注意事项:

  (1)是轴对称图形但不是中心对称的图形有:角、等腰三角形、等边三角形、等腰梯形、正n边形(n为奇数);

  (2)是中心对称图形但不是轴对称图形有:平行四边形;

  (3)既是轴对称图形又是中心对称图形的有:线段、矩形、菱形、正方形、圆、正n边形(n为偶数)

  18、如果要求尺规作图,应清楚反映出尺规作图的痕迹,否则会被扣分(一般作垂直平分线和角平分线较多);

  19、折叠问题:A要注意折叠前后线段、角的变化;B通常要设求知数;

  20、注意特殊量的使用,如等腰三等形中的三线合一,正方形中的角,都是做题的关键;

  21、统计初步和概率习题注意:

  (1)平均数、中位数、众数、方差、极差、标准差、加权平均数的计算要准确;

  (2)认真思考样本、总体、个体、样本容量(不带任何单位,只是一个数)

  在选择题中的正确判断、(注意研究的对象决定了样本的说法)

  (3)概率:

  ①摸球模型题注意放回和不放回、若是二步事件,或放回事件,或关注和或积的题,一般用列表法;若是三步事件,或不放回事件,一般用树状图;

  ②注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等;

  22、综合题的注意事项

  (1)综合题一般分为好几步,逐步递进,前几步往往比较容易,极客数学帮特别提醒一定要做,中考是按步骤给分的,能多做一些就多做一些,可以多得分数;

  (2)注意大前提和各小题的小前提,不要弄混;

  (3)注意前后问题的联系,前面得出的结论后面往往要用到、

  (4)从条件入手,可以多写一些结论,看哪个结论对作题有帮助,实在做不下去时,再审题,看看是否还有条件没有用到,需不需要做辅助线;从结论入手,逆向思维,正着答题;

  (5)往往利用相似(x形或A字形图),设求知数,构造方程,解方程而求解,必要时需做辅助线、函数图像上的点可借助函数解析式来设点,通常设横坐标,利用解析式来表示纵坐标。

数学解题技巧2

  一、忌心中发慌

  如果这套题看起来有很多陌生的题,也不要心慌。有些试题万变不离其宗,只要仔细思考就会产生思路。小编提醒考生,大家在考试过程中要合理掌握时间。如果一道考题思考了大约有二十分钟仍然没有思路,可以先暂时放弃这道题目,不要在一道试题上花费太多的时间,导致最后没有时间去做会做的考题。选择题和填空题一般4分钟左右做一道,整个选择题、填空题的时间控制在55分钟到65分钟,解答题平均一道题10分钟左右,90分钟做完解答题,一般前面两个大题难度不会特别大,时间可以比这个时间少。

  二、应适当放弃

  当确实没有思路的时候要暂时放弃,如果放弃的是一道选择题,建议大家标记一下此题,防止因此题使答题卡顺序涂错,如果时间充足还可再做。但是,标记要慎重,以免被视为作弊,可以用铅笔标记,交试卷之前用橡皮察去。小编提醒考生,如果解答题有两问,第一问做不上,可以把第一问当作已知条件,先完成第二问,这叫调补解答。如果在时间允许的情况下,经过努力而攻下了中间难点,可在相应题尾补上。

  三、确定做题顺序

  在做题顺序上可以采用选择、填空、计算、证明的顺序。完成选择填空后,做大题时,先通观整个试题,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的对应方式,才能镇定自如,进退有据,最终从总体上获胜。比如说,如果对概率部分的题比较熟悉,那么这部分的题做题就是有套路,那就可以先把概率部分做了。小编提醒考生,通常来说,概率部分是三门课中最简单最好拿分的。其次就是线代了,当然线代两个大题可能有一个难度稍微大一点,另外一个难度相对比较小,那么你可以选择把其中简单一点的,自己有思路的那题先做了。最后再来做高数部分的题,高数一共有5个大题,如果是数一的同学,出现难题通常是在无穷级数,中值定理,曲线、曲面积分,应用题。也就是说高数部分有一道大题是相对简单的,可以先把这道题做了,通常这道题也就是在大题的'第一题。就是说,这5道大题,一定要先把分给拿住了。最后再来解决稍微难一点的。当然剩下的几个题,也要有选择性的来做,如果有一点思路的,可以先考虑,完全没有思路的最后处理。

数学解题技巧3

  1、函数

  函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

  2.方程或不等式

  如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

  3.初等函数

  面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

  4.选择与填空中的不等式

  选择与填空中出现不等式的题目,优选特殊值法;

  5.参数的取值范围

  求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

  6.恒成立问题

  恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  7.圆锥曲线问题

  圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的.判别式;

  8.曲线方程

  求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  9.离心率

  求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  10.三角函数

  三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11.数列问题

  数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12.立体几何问题

  立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  13.导数

  导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  14.概率

  概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  15.换元法

  遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

  16.二项分布

  注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

  17.绝对值问题

  绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

  18.平移

  与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

  19.中心对称

  关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

数学解题技巧4

  数学模型法,是指把所考察的实际问题,进行数学抽象,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法。

  利用数学模型法解答实际问题(包括数学应用题),一般要做好三方面的工作:

  (1) 建模

  根据实际问题的特点,建立恰当的数学模型。从总体上说,建模的基本手段,是数学抽象方法。建模的具体过程,大体包括以下几个步骤:

  1.考察实际问题的'基本情形。分析问题所及的量的关系,弄清哪些是常量,哪些是变量,哪些是已知量,哪些是未知量;了解其对象与关系结构的本质属性,确定问题所及的具体系统。

  2.分析系统的矛盾关系。从实际问题的特定关系和具体要求出发,根据有关学科理论,抓住主要矛盾,考察主要因素和量的关系。

  3.进行数学抽象。对事物对象及诸对象间的关系进行抽象,并用有关的数学概念、符号和表达式去刻画事物对象及其关系。如果现有的数学工具不够用,可以根据实际情况,建立新的数学概念和数学方法去表现数学模型。

  (2)推理

  演算。在所得到的数学模型上,进行逻辑推理或数学演算,求出相应的数学结果。

  (3) 评价、

  解释。对求得的数学结果进行深入讨论,作出评价和解释,返回到原来的实际问题中去,形成最终的解答。

数学解题技巧5

  一、答题原则

  大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时报告监考老师处理。

  答题时,一般遵循如下原则:

  1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。

  2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。

  3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。

  4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。

  5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。

  6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到“前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。

  二、审题要点

  审题包括浏览全卷和细读试题两个方面。

  一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。

  二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。

  1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。

  2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。

  3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。

  三、时间分配

  近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的'答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。

  在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。

  在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。

  一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。

  四、大题和难题

  一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。

数学解题技巧6

  1、函数与方程思想

  函数思想是指使用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系使用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,使用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想实行函数与方程间的相互转化。

  2、数形结合思想

  中学数学研究的对象可分为两绝大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方",所以建议同学们在解答数学题时,能画图的尽量画出图形,以利于准确地理解题意、快速地解决问题。

  3、特殊与一般的思想

  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这个点,同学们能够直接确定选择题中的准确选项。不但如此,用这种思想方法去探求主观题的求解策略,也同样有用。

  4、极限思想解题步骤

  极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它相关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

  5、分类讨论思想

  同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续实行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

  二、熟悉常考答题套路

  1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

  2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。

  3、面对含有参数的`初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是.....

  4、选择与填空中出现不等式的题目,优选特殊值法。

  5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。

  6、恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

  7、圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。

  8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。

  9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

  10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。

  11、数列的题目与和相关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。

  12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同。

  13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前间中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。

  14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验准确与否的重要途径。

  15、遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。

  16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存有等。

  17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义。

  18、与平移相关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移-定要使用平移公式完成。

  19、关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的使用:一是垂直,一是中点在对称轴上。

数学解题技巧7

  a、三角函数与向量解题技巧

  平移问题:永远记住左右平移只是对x做变化,上下平移就是对y考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉做变化,永远切记。

  b、概率解题技巧

  它主要是考我们向量的数量积以及三角函数的化简问题看,同时可能会涉及到正余弦考点:对文科生来说,这个类型的题主要是考我们对题目意思的定理,难度一般不大。理解,在解题过程能学

  只要你能熟练掌握公式,这类题都不是问题。会树状图和列表,题目也是相当的简单,只要你能审题准确,这类题型:这部分大题一般都是涉及以下的题型:题都是送分题;对理

  最值(值域)、单调性、周期性、对称性、未知数的取值范围、平移科生来说,主要注意结合排列组合、独立重复试验知识点,同时会问题等要求我们准确掌握分

  解题思路:布列、期望、方差的公式,难度也是不大,都属于送分题,是要求第一步就是根根据向量公式将表示出来:其表示共有两种方法,一我们必须拿全部分数。

  种是模长公式(该种方法是在题目没有告诉坐标的情况下应用),

  题型:在这里我就不多说了,都是求概率,没有什么新颖的地方,另一种就是用坐标公式表示出来(该种方法是在题目告诉了坐标),不过要注意我们曾经

  即在这里遇到过的线性规划问题,还有就是篮球成功率与命中率和防第二步就是三角函数的化简:化简的方法都是涉及到三角函数的诱守率之间关系的类似

  导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),题目。

  解题思路:

  第一步就是求出总体的情况

  第二步就是求出符合题意的情况

  第三步就是将两者比起来就是题目要求的概率

  这类型题目对理科生来说一定要掌握好期望与方差的公式,同时最重要的是独立重复试验概率的求法。

  c、几何解题技巧

  考点:这类题主要是考察咱们对空间物体的感觉,希望大家在平时学习过程中,多培养一些立体的、空间的感觉,将自己设身处地于那么一个立体的空间中去,这类题对文科生来说,难度都比较简单,但是对理科生来说,可能会比较复杂一些,特别是在二面角的求法上,对理科生来说是一个巨大的挑战,它需要理科生能对两个面夹角培养出感情来,这样辅助线的做法以及边长的求法就变得如此之简单了。

  题型:

  这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)

  解题思路:

  证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。

  证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。

  证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。

  其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。

  证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。

  体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。

  二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点A出发引向另一个面的垂线,垂足为B,然后过垂足B向这两个面的交线做垂线,垂足为C,最后将A点与C点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)

  二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。

  这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。

  d、圆锥曲线解题技巧

  考点:这类题型,其实难度真的'不是很大,我个人理解主要是考大家的计算能力怎么样,还有就是对题目的理解能力,同时也希望大家都能明白圆锥曲线中a,b,c,e的含义以及他们之间的关系,还有就是椭圆、双曲线、抛物线的两种定义,如果你现在还不知道,趁早去记一下,不然考试的时候都不知道的哈,我真的无语了。

  题型:这种类型的题一般都是以下几种出法:第一个问一般情况就是求圆锥曲线方程或者就是求某一个点的轨迹方程,第二个问一般都是涉及到直线的问题,要么就是求范围,要么就是求定值,要么就是求直线方程

  解题思路:

  求圆锥曲线方程:一般情况下题目有两种求法,一种就是直接根据题目条件来求解(如题目告诉你曲线的离心率和过某一个点坐标),另一种就是隐含的告诉我们椭圆的定义,然后让我们去琢磨其中的意思,去写出曲线的方程,这种问法就比较难点,其实也主要是看我们的基本功底怎么样,对基础扎实的同学来说,这种问法也不是问题的。

  求轨迹方程:这种问题需要我们首先对要求点的坐标设出来A(x,y),然后用A点表示出题目中某一已知点B的坐标,然后用表示出来的点坐标代入点B的轨迹方程中,这样就可以求出A点的轨迹方程了,一般求出来都是圆锥曲线方程,如果不是,你就可能错了。直线与圆锥曲线问题:三个步骤你还知道吗(一设、二代,三韦达)。

  先做完这个三个步骤,然后看题目给了我们什么条件,然后对条件进行化简(一般的条件都是跟向量呀,斜率呀什么的联系起来,希望大家注意点),在化简的过程中我们需要代韦达进去运算,如果我们在运算的过程中遇到了,一定要记得应用直线方程将表示出来,然后根据韦达化简到最后结果。最后看题目问我们什么,如果问定值,你还知道怎么做么,不知道的就现在来问我,如果问我们范围,你还知道有一个东西么,如果问直线方程,你求出来的直线斜率有两个,还知道怎么做么,如果要想舍去其中一个,你还记得一个东西么。同时如果你是一个追求完美的人,我希望你在做题的时候考虑到直线斜率存在与否的问题,如果你觉得你心胸开阔,那点分数我不要了,我考虑斜率存不存在的问题,那么我就说你牛!!

  个人理解的话,圆锥曲线都不是很难的,就是计算量比较复杂了一点,但是只要我们用心、专心点,都是可以做出来的,不信你慢慢的去尝试看看!

  e、函数导数解题技巧

  考点:这种类型的题主要是考大家对导数公式的应用,导数的含义,明确导数可以用来干什么,如果你都不知道导数可以用来干什么,你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。

  题型:

  最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)

  解题思路:

  最值、单调性(极值):首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式):其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。

  未知数的取值范围(交点或者零点):这种要是没有掌握方法的人,觉得:哇,怎么就那么难呀,其实不然,很简单的,只是各位你要明确这种题的解题思路哈。首先还是需要我们把要求的未知数放在一边,把知道的数放在一边去,这样去求出已知数的最值,然后简单的画一个图形我们就可以分析出未知数的取值范围了,说起来也挺简单的,如果有什么不了解的,可以马上问我,不要留下遗憾。

  f、数列解题技巧

  考点:

  对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。

  题型:

  一般分为证明和计算(包括通项公式、求和、比较大小),

  解题思路:

  证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。

  计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。

  求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!!,

  三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的不一定那么容易的,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。

  比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。

  补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。

数学解题技巧8

  1、配方法

  所谓的配方法公式是就是把一个解析式利用恒等变形的方法,将一些术语匹配成一个或几个多项式正整数幂的形式。通过公式求解数学问题的方法称为匹配方法。其中,常用的是匹配成完全扁平的方式。匹配方法是数学中身份转换的重要方法。它广泛应用于因子分解,简化,方程解,方程和不等式明,函数极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分的乘积。因子分解是身份变形的基础,在解决代数,几何和三角问题中起着重要作用。因子分解的方法很多,除了中学教科书上关于公因子法的提取,公式法,分组分解法,交叉乘法法等,还有诸如使用术语加法,根分解等,,未确定系数等。

  3、换元法

  换元法是数学中非常重要且广泛使用的方法。我们通常将未知或变量称为元素。所谓的替换方法是用新变量替换原始公式的一部分,或者在相对复杂的数学公式中修改原始公式,以简化它并使问题易于解决。

  4、判别方法和韦达定理

  一元二次方程ax2+bx+c=0(a,b,c属于R,a≠0)根辨别,delta=b2-4ac,不仅用于确定根的性质,而且作为一种求解方法问题,代数变形,解方程(群),解不等式,研究函数甚至几何,三角运算具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果首先确定结果的'欲望有一定的形式,其中包含一些未确定的系数,然后根据未确定系数方程组的设定条件,解决这些未确定的系数值或找到这些系数之间的关系未确定系数,从而解决数学问题,这种问题解决方法称为未确定系数的方法。它是中学数学中常用的方法之一。

  6、反法

  反法是间接明。这是一种方法,通过这种方法首先提出与的结论相反的设,然后,从这个设,通过正确的推理,导致矛盾,从而否定相反的设,从而肯定了正确性。原始。矛盾明可以分为矛盾的简化荒谬明(结论的反面只有一种)和矛盾的穷举明(结论的反面不止一种)。通过矛盾明的步骤一般分为:(1)反设;(2)减少;(3)结论。

  7、面积法

  平面几何中的面积公式和与面积公式导出的面积计算相关的属性定理不仅可以用于计算面积,而且还可以明平面几何问题有时会得到两倍的结果。使用面积关系来明或计算平面几何问题称为面积法,这是几何中的常用方法。

  8、客观问题解决方法

  多项选择题是提供条件和结论的问题,需要基于某种关系的正确。选择题设计精巧,形式灵活,可以全面检验学生的基本知识和技能,从而提高考试的能力和知识的覆盖面。

数学解题技巧9

  一、答题先易后难

  原则上应从前往后答题,因为在考题的设计中一般都是按照先易后难的顺序设计的。先答简单、易做的题,有助于缓解紧张情绪,同时也避免因会做的题目没有做完而造成的失分。如果在实际答卷中确有个别知识点遗忘可以“跳”过去,先做后面的题。

  二、 答卷仔细审题稳中求快

  最简单的题目可以看一遍,一般的题目至少要看两遍。 中考对于大多数学生来说,答题时间比较紧,尤其是最后两道题占用的时间较多,很多考生检查的时间较少。所以得分的'高低往往取决于第一次的答题上。另外,像解方程、求函数解析式等题应先检查再向后做。

  三、 答数学卷要注意陷阱

  1.答题时需注意题中的要求。例如、科学计数法在题中是对哪一个数据进行科学计数要求保留几位有效数字等等。

  2.警惕考题中的“零”陷阱。这类题也是考生们常做错的题,常见的有分式的分母“不为零”;一元二次方程的二项系数“不为零”(注意有没有强调是一元二次方程);函数中有关系数“不为零”;a0=1中“a不为零”等

  3.注意两(或多)种情况的分类讨论问题。例如等腰三角形、直角三角形、高在形内、形外、两三角形相似、两圆相交、相离、相切,点在射线上运动等。

数学解题技巧10

  考研数学满分150,很容易拉开分数,因此也是考研学生必争的领地。为了能够更有效的进行数学复习,有必要在开始之前知道一些复习误区,了解一些失分原因,从错题源头开始绸缪。

  先来说客观题部分。客观题就分填空和选择,整个的卷子里边填空是6道题,选择是8道题,这个占了很大的比例,14道题要占到56分,三分之一多的分数,这块历届的丢分比较严重,因为6道填空题是在第一道出的,8道选择题是第二道出的,根据判卷老师的经验,发现有很多的同学在前面的56分可能才得了20多分!如果基本题丢掉30多分,这个时候总分要上去是一件非常不容易的事情。

  填空题比较多的是考察基本运算和基本概念,或者说填空题比较多的是计算,同学丢分的主要原因是,运算的准确率比较差,这种填空题出的计算题题本身不难,方法我们一般同学拿到都知道,但是一算就算错了,结果算错了,填空题只要是答案填错了就只能给0分。

  从这个意义上讲,填空题对我们同学来讲应该是非常残酷的一个事情。那么,怎么来提高运算准确率呢?这就要求我们同学平时复习的时候,这种计算题,一些基本的运算题不能光看会,就不去算,很多的同学看会在草稿纸上画两下,没有认真地算。平时没有算过一定量的题,考试的时候就容易错,这就要求我们平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。

  填空题里面本身有一些特殊的方法和技巧,同学做这种题还是按照常规,有的时候方法不当,本来很简单的.题做成了很复杂的题,有些题可以根据几何意义,结果一眼就看出来了,有些题是根据一些特殊的性质,有的同学习惯做填空题还是按照常规的主观题的方法去做,对一些特殊方法和技巧不了解。

  选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。

  这个地方丢分的原因主要是三个方面。第一个方面我们同学学数学,一个薄弱环节就是这个地方的基本概念和基本理论比较强势的是计算题,喜欢做计算题,相对来说计算题也比较扎实,薄弱环节就是概念和理论,这个本身是我们的薄弱环节。第二个原因,选择题里面确实有些题是有相当难度的,本身有难度,不是说一个卷子里边前面的八道选择题都是很基本的题。第三个原因就是选择题,我们同学做的时候还是缺乏相应的一些方法和技巧,跟刚才填空题一样的还是用常规题的方法去做,同样一个题出成选择题的时候就有很巧妙的方法,由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题,丢分原因主要是这几个方面。

  要想解决应该从三个方面去解决。第一,基本理论和基本概念是我们的薄弱环节,就必须在这下功夫,实际上它的选择题里边要考的东西往往就是我们原来的定义或者性质,或者一个定理这些内容的外延,所以我们复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了,平时在复习的时候要注意基本的概念和理论,本身有些题有难点,但是也不是说选择题有很多有难度的题,一般来说每年的卷子里边八道选择题里面一般有一两道是比较难的,剩下的相对都是比较容易的。

  所以不能为了这一两道题我们花了很多的时间,这个不应该作为重点,另外客观题有一些方法和技巧,我们通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,我们考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧,我们在强化班讲课的时候也给同学做了归纳和总结,我想经过我们的讲解和同学们的努力这个地方应该可以做得很好。

  下面我们讲讲关于计算题,这个在卷子里面是占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题,我们在考卷里面经常看到同学丢分很重要的原因是运算的准确率比较差,所以对计算题刚才前面已经讲了,基本的运算必须要把它练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握这套方法,并且一定自己要实践,这个准确率提高不是看书就可以看得出来的,肯定是练出来的,所以要解决计算题准确率一定要通过一定量的练习。还有一类题就是证明题,应该说比较少,如果要出证明题比较多的是整个卷子里面最难的题,那就是难点。这个证明题都是在整个的内容里面经常有几个难点的地方是经常出题的地方,从复习的时候注意那几个经常出难题的地方的题的规律和方法,应该这个地方也不成大的问题。

数学解题技巧11

  解铃不需系铃人--如何熟练掌握考研数学解题方法

  考研数学是以做题来测试考生掌握知识的程度的,快速正确地完成所给题目是考生复习时应尽力追求的目标。为达到这个目标,集团数学考试辅导中心推出了系统的解决方案,老师们认为,在做09年考研数学历年真题解析的习题时,可以从以下几个方面入手熟练掌握解题之法,提高自己的解题能力。

  从哪里开始?

  做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。

  能想到什么,能做什么?

  在阅读题目的基础上,尽可能使题目形象化,并从题目的叙述中抽出主要部分,即条件与结论、已知与未知等。仔细考虑题目的各主要部分,将它们以不同的.方式进行组合,把每个细节与另一些细节联系起来。从不同方面来观察题目,寻找题目与你已经获得的知识之间的联系。从不同角度,通过不同的途径反复考察题目中的细节点,尝试从中找到新的意义和新的解释,试着找到其中是否能用到《大学数学过关与提高》的重要结论与公式。再次调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。

  这样做能得到什么?

  准备好并弄清那些以后可能会起作用的细节。把各种思路都考虑一下。如果一种思路看上去很有利,你就多考虑一下;如果一种思路感觉很可靠,那就弄清楚它能引领你走多远。也许一种思路就会让你直达目标,也许你需要一个思路一个思路地试探其可行性,最终找到解答。对题目的每一种念头都是有用的,这些念头对最终通往结果的思路都起到促进作用。解答的方法可能不止一种,在找到一种解答方法之后,解题的过程并未结束。思考你的解答与已有知识之间的关系,看看你的解答是否可以简化。如果可以,改进你的解答过程,使之更加直观、简洁。检查引导你获得解答的方法,找出其要点,并在其他题目中尝试应用它。

  如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。

数学解题技巧12

  中考数学填空题解题技巧

  攻略一:概念记清,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的四本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。

  攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。中考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

  攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。

  攻略四:记录错题,避免再犯。俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的"陷阱"里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考当中是“分分必争”,一分也失不得。

  攻略五:集中兵力,攻下弱点。每个人都有自己的'“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。

  中考数学复习答题技巧

  二轮复习需回归课本

  无论是中考还是高考的复习都有两轮。第一轮就是基本上让学生把在初一、初二或者是初三上学期学的内容再回忆起来。因此,第一轮复习更多侧重于知识的回顾;而第二轮复习,则需要做好以下几件事。

  第一,合理回归教材,将书读薄。学生需要对整个初中数学的知识结构有个清晰的认识,这样在做题的时候才能发现考点在哪里;

  第二,温故而知新。以新的视角去发现知识间的内在联系,对数学思想方法有更进一步的认识;

  第三,合理利用。即对书中某些典型例题、习题应当合理利用,变式拓展,总结方法,便于学生掌握。这是因为命题的老师很喜欢把书上的课题进行一个拓展之后作为我们的考题,同时也让学生更重视课本。

  考试可预估难度调整策略

  在考试的过程中,有的同学“艺高人胆大”,拿了试卷就直接从后往前做;有的同学则“争分夺秒”,答题铃声还没响就匆匆做题,这些都是不可取的。

  中考数学试卷是有一定梯度的,答题时一定要从前往后答,切忌从后往前答或从中间向前后答。这是因为前面题简单,容易做,能够给考生“旗开得胜”的快感,使考生紧张心情马上得到平静。同时,在答题的铃声没响前也不要急着答题。如果被监考老师发现而被责备会更加紧张影响答题。这时候可以看一看最后的一两道压轴题。在看的时候就可以预估一下整套试卷的难易度,同时制定答题策略。假如觉得这一份试卷不难,那就可以在前面的题目多花些时间,将答题书写整齐有条理。如果觉得压轴题十分难,就要争取把题目能做多少做多少,不能后面几大题都空着。这时候书写潦草一点,过程简单点都是可以的。

  中考数学应试技巧

  第一,充分利用考前五分钟。

  按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。发现很多考生拿到试卷之后,就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

  学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。这六个大题的难度分布一般是从易到难。我们为了应付这样的一次考试,提前做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就能够控制速度和质量。如果倒数第二题也没有什么感觉,你就想,可能今年这个题出得比较难,那么我现在的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。

  第二,进入考试阶段先要审题。

  审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。

数学解题技巧13

  古语云:授人以鱼,只供一饭。授人以渔,则终身受用无穷。学知识,更要学方法。高考数学解题中,一个不小心,就会丢分。本文针对数学考试中出现的问题,进行了详细的讲解,希望帮助学生培养良好的学习习惯,使学生在学习中能够事半功倍。

  学习数学就是学习解题。搞题海战术的方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和解题的方式上。同学们应该认识到数学学科的特点,在复习方法上和其他学科区别开来。下面我们就来听听清华大学附属中小学网校的老师对高考数学解题方法的一些建议:

  一.解题时需要注意的问题

  1.精选题目,避免题海战术

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2.认真分析题目

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的'灵活应用能力。

  3.做好题目总结

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  1)在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  2)在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  3)能否归纳出题目的类型,进而掌握这类题目的解题方法。

  二.数学解题的一些技巧

  1.思路思想提炼法

  催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。

  2.典型题型精熟法

  抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。

  3.逐步深入纠错法

  巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。

数学解题技巧14

  1.对数学考试成功的标志要有明确的认识

  初中生身经无数次的数学考试,有成功也有失败,有考顺之时,也有别扭之日。那么什么是数学考试成功的标志呢?有人说是分数,有人说是名次,还有人讲只有超过某人才算……其实数学考试分数也有绝对值和相对值,绝对值是拿你自己的数学考试分数与及格线、满分线等比较的结果。相对值是将你自己的数学考试分数放在个人、班级、年级、全市等参照系中衡量其相对位置的结果。正是由于选择的参照系不同,有的同学越比信心越足,越比干劲越大,越比越乐观;而有的同学则越比越没信心,越比对自己越怀疑,越比热情越低。我的观点是,数学考试成功的标志有两条:一是,只要将自己的水平正常发挥出来了,就是一次成功的数学考试。二是,不要横向与其他同学比,要纵向自己与自己比。只要将第一类问题消灭到既定目标,就是一次成功的数学考试。

  2.确定数学考试目标

  有资料显示,每年中考考砸的考生约占25%。因此数学考试前确定目标时,虽然你心中有了上述两条数学考试成功的标志,但是对于第一条,你千万不要以为我可以100%的将自己的水平发挥出来,这才叫正常发挥,更不要幻想超常发挥。而应该按三层递进模式实施你的目标。三层递进模式就是:第一要保证数学考试不考砸。第二要正常发挥。正常发挥就是将自己的水平发挥出80%,发挥出80%已经很不简单了,发挥出80%无疑是没考砸。第三要向更高标准迈进,就是在保证已发挥出80%以后,再向发挥100%努力,再向超常发挥进发。虽然看似简单的三层,但我提出的是:不砸→80%→100%→超常。你若数学考试一上来,就想100%发挥,超常发挥,就可能出现全盘皆输的惨局。那么保证实施三层递进模式的一种最佳方法就是——三轮解题法。

  3.第一轮答题要敢于放弃

  三轮解题法的第一轮是,当你从前往后答题时,一看这题会,就答。一看这题不会,就不答。一看这题会,答的中间被困住卡壳了,就放。这是非常关键的一点。为什么。“会答的先答,不会答的后答’到了数学考试考场就做不到呢?要害在会与不会之间,难在会与不会的判定上。你想,会的题这很清楚。不会的'题也很明了。但恰恰有些题是你乍一看会,一做起来就卡壳,或者我不能立即得出结论,我需要看一看,思考思考、演算演算、琢磨琢磨……真是欲行不能,欲罢不忍。每每都是在这不知不觉中丧失了宝贵的时间,每次数学考试都觉得时间不够用,稀里糊涂地败下阵来。“会答的先答,不会答的后答”作为一条原则是颠扑不破的真理。但若同时将它当作数学考试方法,因为它仅是定性地指出了方向,定量分析不清楚,缺乏可操作性,所以出现有人用它灵,有人用它不灵;有时灵,有时就不灵的现象。尤其是重要的数学考试,每题必争,每分必夺,哪道题都不想轻易放弃,哪一问都想攻下来,哪一分都不想丢的时候,就往往失灵。而“三轮解题法’是一种定量的方法,量化清楚,可操作性强。

  4.敢于休息30秒

  当按着会做的则解,不会做的则放,卡壳的也放的方法,从前做到最后一道题之后,要敢于休息30秒。而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。

  为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为数学考试是高度的耗氧活动,对脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若用意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。敢于休息30秒也是心理状态提升的体现。数学考试时有的同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。敢于休息30秒,就是心理状态走向成熟的开始,因此一定要敢于休息。休息后进人第二轮。

  5.第二轮查缺补漏

  第一轮将会做的题都做了,休息后还有没有会做的题了呢?回答是肯定的。依据有两条:一条是实践的依据;一条是理论的依据。

  任何一名考生几乎都曾有过这样的考试经历,在数学考试过程中某道题不会,不得不放弃了,但当答到后边某处时,忽悠一下想起前边那道题该怎么做了。或者是答到后边某道题,或者看见一道题的某句话、某个符号等,立刻唤醒了记忆,产生了顿悟,激发了灵感等,前边那道题就做出来了。这就是实践的依据。

  数学考试时,从答题开始到达到数学考试最佳思维状态即图中①点处需要一个上升过程,但是达到最佳思维状态后,有些人还能下来,如碰到一道4分左右的小题,自以为能做出来,但抠了半天就是做不出来,心情一团糟,这时绝不是最佳状态了,这时思维状态就下降了。有人一落千丈,也有人下降后还能升上去,再度达到最佳思维状态,而我们希望的理想状态是,尽快达到最佳思维状态,当达到最佳思维状态后,一直持续到考试结束。

  6.第三轮换思路解题

  休息以后,要从前到后检查一遍自己做过的题。检查通过后,从理论上讲,你已经将自己的水平100%的发挥出来了,但实际上是80%。因为你检查虽然通过了,可还存在你没检查出来或检查错了的可能性,所以说是80%。虽然是80%,但已经很不简单了。在一次数学考试中,能将自己的水平发挥出80%就是一次成功的数学考试。你看体育竞赛,你观奥运会,有多少运动员,有多少运动队积多年训练之精华,蓄埋藏4年之心愿,只为了场上一搏。这一搏往往是发挥出平时训练水平的80%就可以取得胜利,就可以拿牌。对发挥出80%,你一定认识到,我的水平已经发挥出来了,我就是这个水平。我对得起自己,对得起父母,对得起……但如果这时数学考试还没结束,还有时间,也没有必要检查第二遍,这时决不能满足80%,要向100%进发,向超常发挥努力,做那些没做上来的题。但是做是做不出来了,已经做过两轮都没做出来,说明是难点,是“硬骨头”。对于难点和“硬骨头”采用常规做法已经不行了。这时要攻,要向难点和“硬骨头”发起总攻。那么如何攻呢?可用换思路解题法来攻。

  换思路解题法是基于这样的思考,当你解题时,仅仅将题做对是远远不够的,只有知道此题有几种解法,哪种是优化的解法才算优秀。许多人都曾有过这样的经历,解题时想起了这题出自哪章哪节,老师讲这点时是如何强调的,此题是考哪个或哪几个知识点,老师出这题想考什么……此时答这题感觉非常有把握,解题非常顺。这就是灵感。其实灵感也没有什么神秘,谁都曾经在数学考试过程中迸发过灵感的火花。当然如果你甚至能看透某题的陷阱和迷惑在哪里,你就是顶尖高手了。总之,此时已是不攻白不攻,不得白不得,攻一步进一寸,得1分是1分的时候了。但要换思路,看看哪题能攻下来攻哪题,哪点能拿下来拿哪点。想想它是出自哪章哪节?老师想考哪个知识点?各点之间是什么关系……这时要放飞你的记忆能力、领悟能力、多向联想能力、逆向思维能力、发散思维能力、创新能力等,多方位、多角度、多层次地思考。这时新的思路就有可能被打开,兴奋点就可能被激活,灵感的火花就可能如年三十的礼花一样在空中绽放。同学们,大胆尝试吧!你曾经有过的灵感定会一次次再现。

  7.变三轮解题法为自定理

  三轮解题法是一种全新的数学考试答题方法,是经过实践验证的科学、合理、有效的数学考试答题方法。认识掌握并运用了三轮解题法的同学都取得了不同程度的进步。但应用三轮解题法却要因人而异,因科而异。若想灵活运用三轮解题法,第一要认识它的科学性、合理性、有效性;第二要实践,没有多次的实践是不能掌握这样一种全新的方法的;第三要总结,看看自己究竟是三轮好,还是二轮妙,或是四轮高。中间的两次休息,多长时间为宜。总之,绝不是一轮到底,不管会不会的题都要跟它拼上三、五回合的从小学沿用至今的数学考试答题方法了。这是一种全新的分轮次解题方法。对不同的科目,应用三轮解题法也应有所差异。比如数、理、化等是这样的三轮。而语文则应该是阅读题之前是一轮,做完就要检查结束。然后阅读题是一轮,最后一轮全身心地写作文。理想状态是作文写完,剩余时间少于5分钟。如果剩多了,说明你前边的时间分配不合理,要改进。英语、历史。政治、地理等的三轮也要因科而异。

  欢迎参考

数学解题技巧15

  两类压轴题主要考点

  纵观全国各地的中考数学试卷,我们不妨把压轴题分为函数型综合题和几何型综合题。

  (一)函数型综合题

  ▼一元二次方程与函数

  相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有比较高的要求。

  中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

  一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

  但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

  ▼多种函数交叉综合问题

  初中数学涉及到的函数就是一次函数,反比例函数以及二次函数。

  这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

  所以,在中考中面对这类问题,一定要做到避免失分。

  (二)几何型综合题

  ▼动态几何与函数问题

  中考压轴题尤以涉及的动态几何问题最为艰难。

  几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

  整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。

  而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

  但是这两种侧重也没有很严格的分野,很多题型都很类似。

  其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。

  ▼几何图形的归纳、猜想

  中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。

  四个压轴题解题切入秘诀

  ▼切入点一:做不出、找相似,有相似、用相似

  压轴题牵涉到的知识点较多,知识转化的`难度较高。

  学生不知道该怎样入手时,往往应根据题意去寻找相似三角形。

  ▼切入点二:构造定理所需的图形或基本图形

  在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

  ▼切入点三:紧扣不变量

  在图形运动变化时,图形的位置、大小、方向可能都有所改变。

  但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

  ▼切入点四:在题目中寻找多解的信息

  图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解。

  如何避免漏解是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

  四个压轴题解题技巧

  ▼定位准确防止“捡芝麻丢西瓜”

  在心中一定要给压轴题或几个“难点”一个时间上的限制。

  如果超过你设置的上限,必须要停止,回头认真检查前面的题。

  尽量要保证选择、填空万无一失,前面的解答题尽可能地检查一遍。

  ▼学会运用数形结合思想

  纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的。

  其特点是通过建立点与数即坐标之间的对应关系:

  一方面可用代数方法研究几何图形的性质,利用几何图形的性质研究数量关系,寻求代数问题;

  另一方面又可借助几何直观,得到某些代数问题的解答。

  ▼学会运用函数与方程思想

  用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。

  这种思想在代数、几何及生活实际中有着广泛的应用。

  直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

  因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。

  例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

  ▼解数学压轴题做一问是一问

  第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。

  过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;

  尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

  在解数学综合题时我们要做到:

  数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。

【数学解题技巧】相关文章:

数学解题技巧12-03

高考数学解题技巧09-25

中考数学的解题技巧09-23

数学解题技巧15篇12-03

高考数学解题技巧15篇09-26

高考数学解题技巧(15篇)09-26

数学选择题解题技巧04-28

数学选择题解题技巧11-06

高一数学解题技巧12-25