《乘法分配律》评课稿(通用21篇)
作为一名教学工作者,编写评课稿是必不可少的,所谓评课,是指对课堂教学成败得失及其原因做中肯的分析和评估,并且能够从教育理论的高度对课堂上的教育行为作出正确的解释。那么问题来了,评课稿应该怎么写?以下是小编为大家整理的《乘法分配律》评课稿,仅供参考,欢迎大家阅读。
《乘法分配律》评课稿 篇1
今天听了我们教研组的郭印老师的一节数学课《乘法分配律》,让我受到了许多启发,也让我想起了自己刚上岗时的一些教学情景。现结合我平时教学中的一些问题,谈一点自己的心得体会。
本节课郭老师为学生创设一个展示平台,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。郭老师采取“五步六动”的教学模式展开教学,学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式,接着在小组内交流这个等式两边的运算顺序,使学生感知“乘法分配律”,为接下来的探究提供了有力的保障。课堂上郭老师的'教态、教风都给我留下了深刻的印象,特别是学生自主上台展示学习效果一环节更让我看到学生的主体地位的良好体现。
对于一个上岗一年半的教师来说,课堂上难免会出现一些所欠缺。如,郭老师对个别学生的精彩表现并没有及时的进行评价;还有课堂的掌控不够灵活,学生出现争议时教师可以借机进行指导,课堂生成更是体现教师机智的地方,而把握教学各环节时间而没有课上解决是一大遗憾。相信随着我们课后的交流,郭老师在今后的课堂上定能注意这些环节。
回想自己刚上班时的青涩,再对比现在,更让我感受到“台上一分钟,台下十年功”这句话的贴切。教学是一项细致的工作,需要平时一点一滴的积累。在以后的教学中,我也要不断地提升自身的素质,博采众长,充分利用一切学习机会,多对比多反思,提高自己驾驭课堂教学的能力。
相信,随着学校对新教师培养力度的加大,一两年后定会涌现出更多的教学新秀。
《乘法分配律》评课稿 篇2
今天听了汪蕾老师执教的《乘法分配律》,汪老师的这节课,通过问题设置,引导学生从生活问题入手,让学生由“学会”,变为“会学”。在老师的精心设计下,学生经历了“寻条件、设问题、找方法、明规律、自总结”这样一个知识形成的过程。学生自主探究的过程在整节教学过程中都得以体现。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
一、数学问题生活化,能力培养探究中
在教学中,为学生创设自主学习的平台,以故事情景带领学生进入课堂,引导学生从故事中找条件,设问题,激发学生兴趣,开拓学生思维。学生根据找出的条件和问题,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。通过自主探究,发现等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。
二、独立探究自主学习搭好台
汪老师要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了初步感知,此时汪老师出示问题(32+4)×2○32×2+4×2让学生完成,通过计算再次找到相等关系。不过,如果能让学生自己模仿,自己再写几个类似的`等式,学生的印象会更加深刻。
课堂中学生自主探究式的学习不是一句空话。,需要教师的精心设计,做好适时地引导,在这节课上,汪老师抓住学生的已有感知,通过“观察这一组等式,你发现了什么”。为学生提供了发散的思维空间。提供猜测与验证的机会,将学习的主动权力还给了学生。学生的兴趣激起了探究的火花。整个教学过程体现了让学生观察思考、自主探究、合作交流的学习方式。提高了学生发现问题、分析问题和解决问题的能力。
《乘法分配律》评课稿 篇3
本节课是在学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上进行的。乘法分配律是学习这几个定律的难点。潘老师没有把重点放在数学语言的表达上,而是把重点放在让学生解决一系列的问题,去完整地感知乘法分配律,主动建构乘法的分配律。教师的导学探究问题的非常明确。在实际的课堂教学中,主要体现在以下几个方面:
1、“情境设计”促进学生对算理的理解,对算理起了支撑的作用。
《标准》特别强调了计算与情境的关系。创设教学情境,有助于激发学生的学习兴趣,使智力达到最佳激活状态,沟通生活实际与数学学习、具体形象与概括抽象的联系,使学生在解决问题中理解和认识数学。
本节课潘老师从众多设想中选择具有生活性和趣味性的男女生比赛引入,激发学生探究的兴趣,学生在用两种不同的方法解决这一问题的过程中,感受两种方法之间的联系与区别,体会乘法分配律的合理性,为下面进一步研究理解乘法分配律提供了现实材料。
2、数形结合,渗透建模思想。
在本节课的教学中潘老师并没有停留在对乘法分配律的文字归纳上,而是进一步让学生利用数形结合的方式来解释乘法分配律的意义。
如活动:“写一写这样的等式。要求如下:
①写出2~3个这样的等式;
②计算等号两边两个算式的值,看看两边是否相等。
从具体的形出发,抽象出数的运算,又回到形来解释运算的含义通过对乘法分配律几何意义的理解,数形结合,循环往复,对运算算理理解的广度、深度、贯通度都有很好的促进作用,这将有助于学生整体数学素养的提高。
3、按照初步感知——验证猜测——概括定律的思路探究理解。
学生通过算式初步感知算式间的联系,一个规律的得出应该通过一组算式的观察得到,只是一个例子就显得十分草率,违背了数学是自然科学的规律,因此潘老师让学生自己出题,自己验证,学生不仅兴趣浓厚,而且主动探究验证,用多个例子得出普遍规律。
4、质疑教材,大胆尝试。
新课程提出“用教材”极大地解放了教师,促进了我们做一个有思想的教师,我们在教学中不断研究积累探讨如何用好教材。根据以往乘法分配律的变式多,学生易出错的问题,潘老师大胆尝试把教材中的情境图稍加改变,采取学生独立思考与小组研讨,全班互动交流的基础上发现、归纳乘法分配律,取得了良好的效果。
5、精挑细选,设计有效练习。
“用教材”不是简单地照搬书中的练习题,本节课潘老师设计练习题把握从易到难,由知识向能力转化的梯度,既从学生掌握基本知识上考虑,又从训练思维的灵活上设计,寻找除书本外一些题型灵活,内容丰富,具有开拓学生思维举一反三的.习题,增加学生灵活掌握知识的能力,让学生在正、反两方面的练习中,充分地感受乘法分配律的妙用,增强学习数学的兴趣。
整堂课,潘老师始终关注这学生的情感、兴趣,创设有趣的教学情境,无论课前的谈话还是课堂中的肢体语言都最大限度的调动学生的注意力和兴趣,让学生快乐着,探索着,并时刻体验着成功的快乐。如当一名学生概括乘法分配律就是把一个算式分开时,老师适时赞赏“你真厉害”,我想当学生听到老师这句话时,他的大脑会高速运转,心里比吃了蜜还甜。
联想自己的课堂教学,我终于明白:数学课要让学生爱学,乐学。老师首先要一切从学生出发,充分调动学生的积极性。
《乘法分配律》评课稿 篇4
乘法分配律原本是一节抽象枯燥的数学概念课。可在周老师的精心组织与动态演绎之下,却让整节课生动活泼,不仅充满了浓浓的数学味,而且夹杂着一股淡淡的生活味。
一、注重了对学生行为习惯的培养。
本课一开始,通过送学生一句话,用看似简单的12个字,不仅拉开了新课的序幕,而且对学生的行为提出了具体要求,比如听要专心,说要大声,学要用心,写要认真。让学生有章可依,注重了对学生行为习惯的培养。
二、加深了等式的“变形”必须有运算律保证的意识。
简便运算很大程度上是凑整,但必须在运算律保证下才能将算式恒等变换,整理或改变成运算律的标准式,可学生往往不能深刻地理解这个要领,随意性很强,就会出现许多令人意想不到的`变形算式,最终酿成错误。周老师在练习的设计上注重对等式进行“变形”。如后面几道练习与拓展练习中都出现了这种类型的题目。周老师设计了不同层次的练习题,进一步巩固、理解乘法分配律,同时培养学生利用规律解决问题的能力。他的课堂中不同的学生都获得良好的发展。
三、乘法分配律的教学既注重它的外形结构特点,同时注重其内涵。
比如在尝试探究环节,先让学生通过计算发现两个算式结果相等,然后引导学生观察发现其外在的结构特点,而后让学生试着用自己的话描述乘法分配律的特点,最后让学生仿写算式和用字母表示乘法分配律,通过以上几个环节,使学生对乘法分配律的外形特点由模糊不清到清晰可见,最后直至在头脑中成像,让学生亲身经历并体验了知识获得的全过程,培养了学生初步的归纳推理的能力。
如果说以上环节重点是对乘法分配律的外形轮廓的勾勒的话,那接下来的环节就是对其内涵的深层次挖掘和剖析。
比如在检测环节,周老师通过多样化的变式练习,步步深入,让学生在一次次的纠错过程中内化新知,掌握新知。特别是闯关习题的设计,以游戏为载体,让学生在一次次快乐的游戏中,多角度多方位完成了知识的建构,这样有助于学生不仅从乘法分配律角度去理解,更从乘法意义角度去理解为什么两个算式是相等的,再一次丰富了分配律的内涵。
总之,周老师极力引导学生用数学的思维方式去发现、去探索、去感悟,学生的主体性得到了充分的发挥。正如瑞士教育学家所说的:教育的主要责任不是积累知识,而是发展思维。我想,通过这节课的学习,孩子们不仅积累了知识,更发展了思维。
《乘法分配律》评课稿 篇5
首先结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的'欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学生学得轻松,学得主动。
通过这节课的教学我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。
《乘法分配律》评课稿 篇6
学生在前面的学习中已经学习了一些有关运算律的知识,对加法交换律、结合律、乘法交换律、结合律有一定的了解和认识,这些都为本课的学习奠定了基础。本课的教学环节和前面学习运算律的教学基本相似,所以学生也有一定的'学习方法和经验,所以乘法分配律的归纳和揭示还是比较顺利的。我重点是结合练习帮助学生进一步的认识乘法分配律的意义以及它与其他运算律的区别。特别是对几个数字的观察和比较以及等式两边的式子分别表示的意义等,通过这样的引导,加深学生对乘法分配律含义的理解,为后面的简便运算的学习奠定基础。
相对于其他运算律的简便运算,应用乘法分配律进行简便运算,学生在实际的运用方面还是有一定困难的。教学中我是分层进行教学的。首先安排的是最基本,学生直接根据乘法分配律就可以直接进行简便运算。在这个环节,我主要是通过练习加深学生对乘法分配律的理解和运用,特别是逆向的运用。接着,在练习环节进行一定的拓展和变化,通过观察、比较等方式,引导学生发现算式间的联系,从而能够灵活的运用运算律。在这个环节,我发现部分学生仍然是在逆向的运用上出现了一些问题。这可能也与学生的思维定势有关系。
《乘法分配律》评课稿 篇7
乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律和结合律的基础上进行教学的。在五大运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律进行简便计算 。
成功之处:
1.本课在教学情境的设计上没有采用课本上的主题图,而是选取学生熟悉的买校服情境:这学期学校要换新校服。上衣每件28元,裤子每条12元。我们班共需缴校服费多少元?学生独立思考,同位交流,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的'意义,即(28+12)×44=28×44+12×44。
2.加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。通过多种形式的练习让学生深入理解乘法分配律的意义。
不足之处:
1.在总结乘法分配律时没有把结构说的很透彻,导致学生出现在练习时有一个同学在同步学习的练习题中把连乘算成乘法分配律。
2.学生的语言叙述不熟练,导致学生虽然会背用字母表示的式子,但是不会应用。
《乘法分配律》评课稿 篇8
乘法分配律是一节比较抽象的概念课,教师可以根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
具体是这样设计的:先创设佳乐超市的情景调动学生的'学习积极性,通过买“3套运动服,每件上衣21元,每条裤子10元,一共花多少元?”列出两种不同的式子,他们确实能够体会到两个不同的算式具有相等的关系。这是第一步:通过资料获取继续研究的信息。(虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。)
第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,教师不要急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。
《乘法分配律》评课稿 篇9
《乘法分配律》教学反思
乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。
在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。
在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。
通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的.式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。
所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。
《乘法分配律》评课稿 篇10
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。通过观察几组数目不同的算式,引导学生发现规律,然后归纳、总结,用语言表述出来。在教学时,我也是按照教学参考书的建议安排教学过程的。先复习乘法的交换律和结合律,接着导入新课。通过(18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3。
让学生观察、分析、思考、归纳,最后在教师的`引导下总结出乘法分配律并加以运用。
教学过程中,导课比较快,在归纳乘法分配律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。课堂上学生气氛不活跃,思维不积极,难以完整地总结出乘法分配律。结果,学生对乘法分配律不太理解,运用时问题较多。如当天在作业时出现的问题就比较多:45×103有三分之一的学生直接乘,不会简便;尤其是计算59×21+21时,学生发现不了它的特点,不会运用乘法分配律,可以说,本节课上得不是很成功。
今后的工作中,要多向以下几个方面努力:
1.多听课,多学习。尤其是青年教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同同课教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。
《乘法分配律》评课稿 篇11
1、在思考如何设计《乘法分配律练习课》之前,我收集了一些本校四年级学生的错题,进行分析,了解学生的学习现状,针对学生普遍存在的问题进行教学设计。
2、经过调查发现学生出现错误的根本原因在于不理解算式的意义,仅仅停留在题目表面,先找相同因数,再套用公式,不能按照算理正确地思考简算过程。所以我认为,这节练习课应该从最朴素的算理——乘法的意义出发,抓住问题本质,才能对症下药。教学中我通过两个判断练习,引导学生从乘法意义的角度理解乘法分配律,从学生的反馈来看,这样的设计教学效果比较合理科学的',学生在进行简算时已经有了检查的意识。而不再是盲目地套用格式。
3、通过将乘法分配律常见题型进行归类,不同题型采用了不同的小妙招来解决,题目形式变化,解决方法也不同,但只要符合“几个几加上几个几”的意义,紧扣每一步都相等,就能够借助乘法分配律进行简算。学生对这4个简算小妙招比较感兴趣,从练习反馈来看学习效果比较好。
本节课的教学设计合理、教学重难点突出,教学目标明确、教学效果比较好。当然也有一些不足之处:在计算大长方形的面积时,课件上呈现的数字要把单位带上,如果时间允许,最好给学生5分钟左右的集中练习的时间。
《乘法分配律》评课稿 篇12
乘法分配律是人教版数学第三单元的内容,它是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。但要做到让学生进行“探究、推理、自己总结规律”很难,因为上的是直播棵,为了突破难点,在备课时,我做足了功课,首先我从例题入手,把乘法分配律放在具体的`情境中,结合学生已有的生活经验,学生发现解决问题策略很多,此题可以用两种方法解答:(1)(4+2)×25;(2)4×25+2×25,通过比较,学生知道了为什么:(4+2)×25=4×25+2×25,经历了知识探究的过程,讲完例题后,又让学生通过发语音、课堂连麦的形式让举了许多这样的例子,提高了学生学习的积极性,每个例子不仅可放在具体情境中,也可借助乘法的意义让学生进一步理解,从而得出什么是“乘法的分配律及它的应用”,课堂取得了很好的效果。
《乘法分配律》评课稿 篇13
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的`学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:
一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
二、让学生根据自己的爱好,选择自己喜欢的书,出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。由学生计算总价列式,到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。
《乘法分配律》评课稿 篇14
曾经真的以为自己是一个很负责任的人:我爱我的学生,我爱我的数学教学,甚至可以为了我的学生与数学教学,放弃我个人的休息时间,为的只是我爱的学生能爱上我教的数学,能把数学学得很出色。然而为什么总是事与愿违,成效“背叛”了设想,作业“背叛”了课堂?一切显得那么捉襟见肘,“徒劳无功”成了我这学期最大的感受,到底问题出在哪里呢?当我回想起教学中一点一滴的琐事,老师们交流时的经验之谈,再重新翻阅起一些理论书刊时,我似乎意识到自己其实早已经“背叛”了数学教学。
“哦,简单,简单!”黄玄昶又乐滋滋地高高举起他的.手,果然不出我所料,他的回答又正中我的下怀,这不正是我所期望的答案吗?说实话,开公开课我就喜欢像他这样的学生,积极举手发言,而且一步一步被我“引进”来,突出所谓的教学重点,攻克预设的教学难点,最后解决相应的问题,“看上去很美”,真的,经过我的“引导”,他能“自主探索”,寻求规律,最后消除疑问,这不是一件看上去很“完美”的事吗?
可是……“怎么又错了!”我真是纳闷,上课如此“高效”的人,怎么作业就这么惨不忍睹?题目稍一拐弯,就转不过来了,曾经我把他定论为思维的灵活性不够,然而上完这堂《利用乘法分配律进行简便运算》后,经过反思与请教,我终于发现我错了。
《乘法分配律》评课稿 篇15
这节课是在学生学习乘法分配律基础上进行教学的。在第一课时学生对于乘法分配律的意义已经有了初步的理解,对于乘法分配律的结构也有了一定的认识,能初步利用乘法分配律进行简便计算。本课内容的教学重点是灵活根据题型应用乘法分配律进行简便计算。
成功之处:
1.课始通过复习乘法分配律的意义,以及应用乘法分配律进行填空的练习,让学生进一步熟悉乘法分配律的结构及特点,加深对乘法分配律意义的理解。
2.分类型进行练习。采用边讲边练相结合的方法,让学生通过专项练习进一步巩固每一类型题目。共分为四类:第一类是a×(b+c);
第二类是a×b+a×c;第三类是a×b+a;第四类是接近整十整百的数乘一个数。整体教学就是稳扎稳打,一步一个脚印,让所有学生都能掌握其中的变式练习,然后再进行综合训练,让学生灵活解决问题。
不足之处:
1.由于分类型讲解练习,导致时间分配不足,个别题型没有足够的时间进行练习。
2.学生的'注意力集中不够,导致个别学生对某一类型的题目没有掌握。
再教设计:
1.加强小组合作的学习,能自己解决的问题,就自己解决,能小组解决的问题,就小组解决,充分发挥小组组际间的交流,留给学生更多的时间和空间,发挥学生主体作用。
2.抓住易出错类型题,重点讲解,重点训练。
《乘法分配律》评课稿 篇16
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。
新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
初步的'教学设想是这样的:首先举一些学生身边的例题求长方形的周长,然后让学生观察这两组算式有什么样的关系。学生通过计算发现每组两个算式相等。在此基础上让学生完成长方形周长计算这样的例子并在黑板上列出,再出示例题,让学生分组讨论并解答。然后分组讨论这些算式有什么规律,引导学生发现乘法分配律并总结出这一规律。最后做一些练习巩固、拓展对乘法分配律的认识。
在教学之后发现有一些问题。孩子对于乘法分配律的作用及意义没有理解透彻,应用不够灵活,而且在口头上感觉很好,但是落笔后就发现很多类型题孩子根本就不会做,而且错误很多。所以对本节课教学目标进行了一些调整。让一名学生在黑板上板演,其他学生在本子上做,最后总结不同方法,看哪种方法简便。进一步体会乘法分配律的作用。
教学目标定位是:
(1)通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
《乘法分配律》评课稿 篇17
乘法分配律教学是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上进行的。它是学生较难理解与叙述的定律。因此我在教学中让学生在不断的感悟、体验、练习中理解乘法分配律,从而达到熟练掌握的效果。
一、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。渗透“由特殊到一般,再由一般到特殊”的认识事物的`方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
二、在本课教学过程的设计上,我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。举例:设计学校买书的情景。让学生帮助出主意。出示:“一套故事书45元,一套科技书35元,各买3套书。一共需要多少元钱?”让学生尝试通过不同的方法得出:(45 +35 )×3 = 80×3 = 240(元)、45×3 + 35×3 = 135+105= 240(元)。此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a + b)× c = a × c + b × c本节课气氛活跃,学生积极性高。可通过练习发现孩子们掌握得并不如意,在下节课我将继续加强练习。
《乘法分配律》评课稿 篇18
《乘法分配律》是四年级数学下册第三单元中的一节教学内容,一直以来的教学中,我认为这节课的教学都是一个教学难点,学生很难学好。
我认为其中的不易可以从三个方面来说:其一,例题仅仅是分配律的一点知识,在课下的练习题中还存在不少乘法分配律类型的题(不过,这好像也是新课改后教材的表现)。如果让学生仅仅学会例题,可以说,你也只是学到了乘法分配律的皮毛;其二,乘法分配律只是一种简单的计算方法的应用,所有用乘法分配律计算的试题,用一般的方法完全都可以计算出来,也就是说,如果不用乘法分配律,学生完全可以计算出结果来,只不过不能符合简便计算的要求罢了,问题是学生已学过一般的方法,学生在计算时想的最多的还是一般的计算方法;其三,本节课的教学灵活性比较大,并没有死板板的模式可以来死记硬背,就是学生记住了定律,在运用时,运用错了,也是很大的麻烦,从题目的分析到应用定律都需要学生的认真分析及灵活运用。
针对以上自己分析可能出现的问题,确定从以下两个方面时行教学:
第一,以书本为依托,学好基础知识。
有一句话叫做“万变不离其宗”。虽然课下还有多种类型题,但它们都与书上的`例题有着亲密的联系,所以教学还是要以书本为依托。在教学中,我引导生通过观察两个不同的算式,得出乘法分配律的用字母表示数:a×b+a×c=a×(b+c),在引导学生经过练习之后,我还强调学生,要做到:a×(b+c)=a×b+a×c。用我自己的话说,就是:能走出去,还要走回来。再次经过练习,在学生掌握差不多时,简单变换一下样式:(a+b)×c=a×c+b×c,走回来:a×c+b×c=(a+b)×c。如此以来,学生算是对乘法分配律有了个初步的认识,知道是怎么回事,具体的运用还差很远,因为还有很多的类型学生并不知道。于是我就在第二节课进行了第二个方面的教学。
第二,以练习为载体,系统巩固知识。
针对乘法分配律还有多种类型,例题中也没讲到的情况,我上网查资料,加上并时的一些认识,把乘法分配律分为五类,并对每类进行简单的分析提示,附以相应的练习题印发给学生,让学生进行练习。
《乘法分配律》评课稿 篇19
由于本学期的时间比较短,所以自己在讲四年级数学课的时候,不免有些匆匆。为了保持好进度,习题处理稍显落后。在近一段时间对孩子们的“运用乘法分配律进行简算”的检查来看,效果不是很好。我发现这是好多学生不容易掌握的,很容易和乘法的结合律弄混淆。所以,我就想搞清楚,到底孩子们是哪里没有搞清楚?就在课下又提问了几个老在分配率出错的孩子运算公式,发现有的孩子能结结巴巴地把公式背出来,有的是比较顺利地进行背诵。那么,会顺利背诵公式的孩子们到底是哪里不会呢?
带着这个问题,我是旁敲侧击地进行“盘问”——我拿着生活中的2.5元的冰淇淋打比方,问问买23个和28个需要多少钱?孩子们算的很快。他们知道把23分解成20加上3,还有部分学生28×25=(20+8)×25,我当时一项,哎呦不错,还不是完全不会啊。看来,孩子们在真正的'生活情境中还是有一大部分人会自觉的用乘法分配律的。可是,真正运用到教学中,孩子们确实很难达到自觉地运用分配律去计算,特别是一些变式就更加的困难了。
在批改作业的时候,有三四个孩子的下面的结果却是让我大跌眼镜——28×25=(20+8)×25=20×8×25,当时我就在想,坏了,孩子们把这两个公示记混淆了。果不其然,我给他们出了一道题72×25=(8×9)×25=8×25+9×25,我在给学生们一一讲解的时候,我就在反思,这一类问题出现是因为孩子们没有自觉观察算式特点的习惯。他们只是急匆匆的完成自己的作业,对于此类的计算的目的单纯得很就是只要得到答案,自己就忽略了计算的过程。
后来我就想,我去时应该多出一点类似于(80+8)×25,72×25,125×32×25的这些题对孩子们进行相应的练习,这样来提高孩子们对公式概念的认识。我可以让孩子们先学会一道题的做法,在慢慢来进行相应的引导。并且出一些题目要求孩子们使用分配律或者结合律等等,对孩子们进行巩固。让孩子们学会多种方法解决一到数学题,把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。做到真正的学以致用!
《乘法分配律》评课稿 篇20
乘法分配律是第三章的教学难点也是重点,乘法分配律教学反思。这节课的设计。我是从学生的生活问题入手,利用学生感兴趣的买奶茶展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
一、引入生活问题,激趣探究
在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”,让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的'感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
二、提供学生独立探究的机会
我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。
三、为学生的学习方式的转变创设了条件
为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
《乘法分配律》评课稿 篇21
乘法分配律是第三章的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用与生活密切相关的情境图植树问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了 “ 观察、初步发现、举例验证、再观察、发现规律、概括归纳 ” 这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
一、引入生活问题,激趣探究
在教学中,我为学生做好新知铺垫,然后创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题: “ 一共有多少名学生参加这次植树活动? ” 。让学生根据提供的条件,用不同的方法解决,从而发现( 4 + 2 ) ×25=4×25 + 2×25 这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知 “ 乘法分配律 ” 。再让学生 “ 观察这个等式左右两边的不同之处 ” ,再次感知 “ 乘法分配律 ” 。同时利用情景,让学生充分的感知 “ 乘法分配律 ” ,为后来 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供学生独立探究的机会
我要求学生观察得到的两个等式,提出 “ 你有什么发现? ” 。此时学生对 “ 乘法分配律 ” 已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较 “ 模糊 ” 的认识。
三、为学生的`学习方式的转变创设了条件
为了让 “ 改变学生的学习方式,让学生进行探索性的学习 ” 不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出 “ 观察这一组等式,你能发现其中的奥秘吗? ” 。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
【《乘法分配律》评课稿】相关文章:
[精选]乘法分配律评课稿10-10
《乘法分配律》评课稿12-01
乘法分配律的评课稿07-24
乘法分配律评课稿06-23
乘法分配律评课稿03-15
(热)乘法分配律评课稿09-16
(优)乘法分配律评课稿09-16
《乘法分配律》评课稿集锦04-11
《乘法分配律》评课稿优04-18
乘法分配律评课稿4篇【经典】07-20