倒数的认识教学设计

时间:2023-01-31 08:50:38 设计 我要投稿

倒数的认识教学设计15篇

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,教学设计是一个系统化规划教学系统的过程。优秀的教学设计都具备一些什么特点呢?下面是小编为大家收集的倒数的认识教学设计,希望对大家有所帮助。

倒数的认识教学设计15篇

倒数的认识教学设计1

  教学内容

  倒数的认识

  教学目标

  1、通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2、使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3、通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重难点

  教学重点

  理解倒数的.意义,学会求倒数的方法。

  教学难点

  发现倒数的一些特征。

  教具准备

  课件

  设计意图

  教学过程

  特色设计

  通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  一、猜字游戏引入新课

  找找下面文字的构成规律

  呆———杏 土———干吞———吴

  按照上面的规律填数

  ——( ) ——( ) ——( )

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1.课件出示算式。

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。

  我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2.出示倒数的意义:乘积是1的两个数互为倒数。

  3.你是怎样理解互为倒数的呢? 能举例吗?

  (二)深化理解。

  1.乘积是1的两个数存在着怎样的倒数关系呢?

  2.互为倒数的两个数有什么特点?

  3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  因为1x1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1.讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2 两个分数的倒数。

  学生试做讨论后,教师将过程 。

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  三、巩固练习

  (一)完成教材第28页的“做一做”

  (二)完成教材第29页练习六的第1-5题。

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

倒数的认识教学设计2

  教学内容

  教科书第28~29页例1、“做一做”及相关内容。

  教学目标

  1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

  2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

  3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

  教学重点

  理解倒数的意义;求一个数的倒数。

  教学难点

  理解“互为倒数”的含义。

  教学准备

  教学课件、写算式的卡片。

  教学过程

  具体内容 修订

  基本训练,强化巩固。(3分钟)

  1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的`四道结果不为1的算式)。

  2.学生独立完成上面几组题,小组内检查并订正。

  创设情境,激趣导入。(2分钟)

  请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

  提示目标,明确重点。(1分钟)

  通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

  学生自学,教师巡视。(6分钟)

  1. 观察这些算式,如果将它们分成两类,怎样分?

  2.通过观察发现算式的特点。

  展示成果,体验成功。(4分钟)

  让学生说说乘积为1的算式有什么特点。

  学生讨论,教师点拨。(8分钟)

  1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

  2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

  3.引导学生思考:互为倒数的两个数有什么特点?

  4.探讨求倒数方法。

  (1)出示例题,让学生说说哪两个数互为倒数。

  (2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

倒数的认识教学设计3

  教学目标:

  1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  2、 培养学生观察、归纳、推理和概括的能力。

  教学过程

  一、创设活动情景,引入概念

  出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

  师:同学们发现了每组算式两个分数的'分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  让学生读一读:“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、探究讨论,深入理解

  让学生说说对倒数意义的理解。

  提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的句子错在哪里?应该怎样叙述。

  因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

  三、运用概念,探讨方法

  出示例2,找一找哪两个数互为倒数?

  汇报找的结果,并说说怎样找的?

  1、 看两个分数的乘积是不是1;

  2、 看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  (1)找分数的倒数:交换分子与分母的位置。

  例:

  (2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  例:

  四、出示特例,深入理解

  看一看,例2中的哪些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、 关于1的倒数。

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  也可以这样推导:

  1的倒数是1。

  2、 关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  也可以这样推导:

  分母不能为0,所以0没有倒数。

  五、巩固练习

  1、 完成“做一做”。先独立做,再全班交流。

  2、 练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、 同桌进行互说倒数活动(练习六第2题)。

  六、总结

  今天学习了什么?

  什么叫倒数?怎样找出一个数的倒数?

倒数的认识教学设计4

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:

  理解倒数的意义,求一个数的倒数。

  教学难点:

  从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4

  2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的'观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1.2 0

  学生独立完成,然后交流。

倒数的认识教学设计5

  教材分析:

  这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

  设计理念:

  本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

  教学目标:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  能力目标:

  培养学生观察、归纳、猜想、推理和概括的能力。

  情感目标:

  提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

  教学重点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学难点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学过程:

  一、课前谈话突破难点

  1、谈话——蕴含“两个”,突破“互为”

  师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

  二、导入揭题,引导质疑

  师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

  师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

  预设:什么是倒数?怎样求倒数?……

  这节课一起来探究这些问题?

  三、创设活动情景,理解概念——“倒数是什么”

  师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

  1、在分类中理解“是什么”

  ①5/8×8/5②0。25×4③3/4+1/4

  ④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

  计算后你有什么发现?

  师:如果请你将这六个算式分成两类,你准备怎么分?

  (学生汇报:乘积是1。)[适当处板书:乘积是1]

  归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

  师:这三个算式有什么共同的特征吗?

  预设:乘积是1。

  2、举例感悟“怎么做”

  师:你还能举出这样的例子吗?

  还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

  归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

  5/8倒数是8/5,8/5倒数是5/8。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  ②0。25×4这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  ⑤13/7×7/13

  3、在思辨中深入理解

  师:能说3/4和1/4互为倒数吗?为什么?

  师:能说3/2、6/5和5/9互为倒数吗?为什么?

  四、运用概念,探究方法——“怎样求倒数”

  过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的`倒数吗?

  (投影,出示例2)

  1、求下面各数的倒数

  3/5267/20。610。250

  学生尝试。

  回报交流。

  师:这组数中,你最喜欢求哪些数的倒数?为什么?

  预设:

  生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

  生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

  师:这组数中,你最不喜欢哪个数的倒数?

  预设:

  生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

  生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

  师:那你是怎样求26的倒数的呢?

  你是怎样求一个小数的倒数的呢?

  归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  2、强调书写格式

  师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

  归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  先说说下面每组数的倒数,再看看你能发现什么?

  (1)3/4的倒数是()(2)9/7的倒数是()

  2/5的倒数是()10/3的倒数是()

  4/7的倒数是()6/5的倒数是()

  (3)1/3的倒数是()(4)3的倒数是()

  1/10的倒数是()9的倒数是(

  nbsp;1/13的倒数是()14的倒数是()

  由学生说出各数的倒数。

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  预设:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。

  3、填空:

  7×()=15/2×()=()×0。25=0。17×()=1

倒数的认识教学设计6

  教学目标:

  (1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

  (2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

  (3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

  教学重点:

  倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

  教学难点:

  熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

  教学准备:

  写有数的纸片。

  教学过程:

  一、导入新课。

  请同学们观察下面两组字:杏–呆,吴–吞。

  师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

  学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。

  师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?

  学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

  师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

  二、新知探究。

  (一)小组验证互为倒数的两个数的特点。

  师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

  师:你们刚才写的所有算式都有怎样的共同点?

  学生:我们写的每组数的分子与分母的位置是调换了的。

  师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

  板书:第一组:3/2+2/3=9/6﹢4/6=13/6

  6/5+5/6=36/30+25/30=61/30

  第二组:3/2-2/3=9/6-4/6=5/6

  6/5-5/6=36/30-25/30=11/30

  第三组和第四组:3/2×2/3=16/5×5/6=1

  师问:互为倒数的两个数相加、相减、相乘有何特点?

  学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

  师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

  指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

  2、试下面数的倒数。

  2的倒数是0。2的倒数是0。25的倒数是

  让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的`学生说说它们是怎么互为倒数的。

  明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

  (二)课堂练习:求一个数的倒数。

  1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

  2、师:完成教材P45“填一填”

  5/87/462/310.8(补充)

  让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

  3、讨论:0有倒数吗?学生交流。

  板书:0和任何数相乘都不能得到1,所以0没有倒数。

  4、完成P47课堂活动的对口令。

  汇报时让学生说一说谁是谁的倒数。

  (小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  5、出示判断:

  (1)得数为1的两个数互为倒数。()

  (2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

  (3)互为倒数的两个数乘积一定是1。()

  (4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )

  (5)a是1/a的倒数,1/a是a的倒数。()

  (6)a/b是b/a的倒数,b/a是a/b的倒数。()

  6、探索求真分数和假分数的倒数的特点。

  学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

  师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

倒数的认识教学设计7

  教学目标

  1。通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2。使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3。通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重难点 :

  理解倒数的意义,学会求倒数的方法。

  教学难点:

  发现倒数的一些特征。

  教具准备

  课件

  设计意图

  通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  一、猜字游戏引入新课

  找找下面文字的构成规律

  呆———杏 土———干 吞———吴

  按照上面的规律填数

  ——( ) ——( ) ——( )

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1.课件出示算式。

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。

  我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2.出示倒数的意义:乘积是1的两个数互为倒数。

  3.你是怎样理解互为倒数的呢? 能举例吗?

  (二)深化理解。

  1.乘积是1的两个数存在着怎样的`倒数关系呢?

  2.互为倒数的两个数有什么特点?

  3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1.讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2 两个分数的倒数。

  学生试做讨论后,教师讲过程 。

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2。怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  三、巩固练习

  (一)完成教材第28页的“做一做”

  (二)完成教材第29页练习六的第1—5题。

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

倒数的认识教学设计8

  教学内容:

  新人教版六年级数学上册第28页的例1。

  教学目标:

  1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

  2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

  3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

  教学重点:

  理解倒数的意义,学会求倒数的方法。

  教学难点:

  熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

  教学准备:

  多媒体课件。

  教学过程:

  一、猜字游戏导入,揭示课题。

  上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

  如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

  师:谁还能说出这样的数?(课件出示)

  象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

  二、出示学习目标:

  1、理解倒数的意义。

  2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

  三、自主探究新知

  (一)探究讨论,理解倒数的意义。

  1、(课件出示教材第24页例1的四个算式。)

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

  生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

  3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

  2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

  3、想一想:1的.倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1、讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7

  所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

  师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

  3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  四、堂堂清作业

  (一)填一填。(出示课件)

  1、乘积是()的()个数()倒数。

  2、a和b互为倒数,那a的倒数是(),b的倒数是()。

  3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

  4、一个真分数的倒数一定是()。

  (二)判断题。(演示课件)

  1、5/3是倒数。()

  2、因为3/4×4/3=,所以4/3是倒数。()

  3、真分数的倒数大于1,假分数的倒数小于1。()

  4、因为1/4+3/4=1,所以1/4和/4互为倒数。()

  (三)说一说。(课本第29页的第3题)

  五、课堂小结:

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

  2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

  求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

倒数的认识教学设计9

  【教学内容】

  教材P28页中的例1、“做一做”及练习六中的部分练习题。

  【教学目标】

  1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  【教学重点】

  理解倒数的意义,学会求倒数的方法。

  【教学难点】

  小数与整数求倒数的方法以及0、1的倒数。

  【教学方法】

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  【教具准备】

  课件

  【教学过程】

  一、激趣引入

  师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?

  二、新知探究

  (一)探究讨论,理解倒数的.意义。

  1、课件出示算式。

  先计算,再观察,看看有什么规律。

  3/8×8/37/15×15/75×1/51/12×12

  小组汇报交流

  2、出示倒数的意义:乘积是1的两个数互为倒数。

  3、你是怎样理解“互为倒数”的呢?能举例吗?

  4、倒数的表达方式。

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  2、互为倒数的两个数有什么特点?

  3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  4、辨析:下面的说法对吗?为什么?

  A:2/3是倒数。()

  B:得数为1的两个数互为倒数。()

  C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()

  D、0的倒数还是0。()

  (三)运用概念。

  1、讨论求一个分数的倒数的方法。

  出示例1:写出其中3/5和7/2两个分数的倒数。

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。

  2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)

  3、1的倒数是几?0的倒数是几?

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:1的倒数是1,0没有倒数。

  4、小结。

  求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。

  三、巩固练习

  1、写出下面各数的倒数。

  4/1116/97/84/1535

  2、判断。

  (1)真分数的倒数都是假分数。()

  (2)假分数的倒数都小于1。()

  (3)0的倒数是0,1的倒数是1。()

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

倒数的认识教学设计10

  教学内容:

  教科书第50页例7及相应的练习

  教学目标:

  1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

  2、培养学生举例、观察、比较、抽象概括能力。

  3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

  一、口算导入

  分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);

  师:今天,我们就一起来研究乘积是1的'这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

  展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

  师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

  指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

  二、教学新课

  师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。

  (1)问:“互为”是什么意思?(互相)

  一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

  (2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

  (3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

  (4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

  (5)选择一个算式,跟你的同桌说说谁是谁的倒数。

  三、求一个数的倒数

  1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

  为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

  讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?

  好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

  2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

  自主探究

  a四人为一小组,选择一种情况研究

  b生交流汇报,师板书例子

  c引导概括求倒数的方法

  3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

  那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)

  4、归纳如何求一个数的倒数

  求一个数的倒数(0除外),只要把它的分子、分母交换位置。

  5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

  展示,核对,强调互为倒数的两个数之间不能用“=”连接。

倒数的认识教学设计11

  教学重点:认识倒数并掌握求倒数的方法

  教学难点:小数与整数求倒数的方法

  教学过程:

  一、基本训练

  口算:

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

  (板书:倒数)

  三、新课教学

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  请看:,那么我们就说是的倒数,反过来(引导学生说)

  是的倒数,也就是说和互为倒数。

  和存在怎样的倒数关系呢?2和呢?

  2.深化理解

  提问:①什么是互为倒数?

  怎样理解这句话?(举例说明)

  (的倒数是,的倒数是,......不能说是倒数,要说它是谁的`倒数。)

  ②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

  3.求一个数的倒数

  教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

  ①出示例题

  例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是。

  (能不能写成,为什么?)

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ②深化

  你会求小数的倒数吗?(学生试做)

倒数的认识教学设计12

  教学重点:

  认识倒数并掌握求倒数的方法

  教学难点:

  小数与整数求倒数的方法

  教学过程:

  一、基本训练

  口算:

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的.关系。

  (板书:倒数)

  三、新课教学

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  请看:那么我们就说xx是xx的倒数,反过来(引导学生说)

  xx是xx的倒数,也就是说和互为倒数。

  xx和xxx存在怎样的倒数关系呢?2和呢?

  2、深化理解

  提问:

  ①什么是互为倒数?怎样理解这句话?(举例说明)

  ②0有倒数吗?为什么?1有倒数吗?什么?

  3、求一个数的倒数

  教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

  ①出示例题

  例:写出、的倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是。

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ②深化

  你会求小数的倒数吗?

倒数的认识教学设计13

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  概括倒数的意义,掌握求倒数的方法。

  教学难点:

  理解“互为”、“倒数”的含义以及0、1的倒数。

  教学方法:

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  课 型:新授课。

  教学过程:

  一、游戏激趣,揭示课题。

  1、理解“互为”的含义。

  朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(xxx和我互为朋友,我是xxx的朋友,xxx也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他

  们二人的关系吗?(略)那我们能说xxx是朋友吗?(不能,因为朋友是相互的,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——

  (父子关系、母女关系等)

  2、简单理解“倒”。

  师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。

  二、新课教学。

  (一)引导质疑。

  学生算完后,观察并思考:这些题有什么共同的地方?

  生1:得数是1 生2:乘积是1

  除了乘积是一,因数还有什么特点(分子分母交换位置)

  师再举例如: 5/4x4/5 7/10x10/73x1/3

  进一步明确并(板书):乘积是1

  生3:都是两个数相乘。 〈 板书 〉:两个数

  1、 你们还能写出两个数乘积是1的算式吗?

  那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)

  出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。

  师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?

  比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。

  生:

  ①模仿说

  ②同桌互说

  2、理解意义:

  (1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?

  (互为”是指两个数的'关系。 “互为”说明这两个数的关系是相互依存的。)

  倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  (2)以前我们学过这种两数间相互依存关系的知识吗?

  (3)2/5和5/2的积是1,我们就说(生齐说)

  (4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同

  (5)辨析:下面的说法对吗?为什么?

  A、2/3 是倒数。( )

  B、得数为1的两个数互为倒数。( )

  C、12712和x43712乘积是1 ,所以32127和32712互为倒数。( ) x=1,所以12、43、互为倒数。 ( )

  3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  (二) 探索求一个倒数的方法

  1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)

  根据这一特点你能写出一个数的倒数吗? 试一试!

  2、写出下列各数的倒数:3/5 7/2 5 13

  (1)先写3/5的倒数。教师查看学生书写的情况。

  (2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示

  3/5 的倒数是( ) 7/2 的倒数是( )

  5 的倒数是( ) 13 的倒数是( )

  师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)

  师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。

  3、1和0的倒数

  师:那1 的倒数是几呢?为什么?

  0的倒数呢?

  师:为什么?

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、把这此分数的分子分母调换位置后?(生齐:分母就为0了,而分母不可以为0。)

  4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。

  三、练习巩固。

  1、判断题:

  ①互为倒数的两个数,乘积是1。 ( )

  ②任何假分数的倒数是真分数。 ( )

  ③因为3x1/3=1,所以3是倒数。 ( )

  ④1的倒数是1。 ( )

  2、思考题:

  3/8x( )=( )x=( )x6=1

  3、找出马小虎的日记错误并改正。

  今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3x1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  四、全课小结

  同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。

  五、作业

  课本26页第4题。

倒数的认识教学设计14

  一、创设情境、导入新课。

  1、课件出示:吞---吴干---士杏---呆。

  2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?

  3、学生汇报。

  4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)

  二、出示学习目标

  1、能够理解和掌握倒数的意义。

  2、学习求一个数的倒数的.方法,能正确地求出一个数的倒数。

  三、探究新知识

  1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)

  3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)

  4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

  5、强调“两个数”“乘积是1”

  6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。

  7、随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。

  8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?

  9、以小组为单位进行讨论交流。

  10、分组汇报:

  第一种方法:看两个分数的乘积是不是1。

  第二种方法:看两个分数的分子与分母是否分别颠倒了位置。

  哪一种方法比较快?

  11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

  我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?

  1、真分数、假分数。

  2、整数

  3、小数

  4、带分数(板书)

  12、例2中还有哪些数没有找到倒数?

  13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)

  四、巩固练习

  我们现在应用今天学习的知识解决一些问题。

  五、课堂总结。

  板书设计成知识树。

倒数的认识教学设计15

  教学内容

  新课标六年级上册课本P28页的例1做一做,第29页的练习六。

  教学目标:

  1. 通过观察、比较、概括、抽象,从本质上理解倒数的意义,并掌握求倒数的方法。

  2. 培养学生的数学思维,并能比较熟练地写出一个数的倒数。

  教学重点:

  倒数的意义与求法。

  教学难点:

  从本质上理解倒数的意义。

  一、 创境导课、激发兴趣。

  师:同学们,我们在学习新课之前,来做个文字颠倒游戏,比如老师说:“人小”,大家可以说“小人”,你们想玩吗?

  生:(大声喊道)想!

  师:学科

  生:科学

  师:人人为我,

  生:我为人人。

  师:上海自来水,

  生:水来自海上 ??

  师:同学们,刚才的文字颠倒游戏好玩不?

  生:好玩。

  这是语文方面的倒数现象,数学方面把一个数倒一下会有什么现象,你们想知道吗?好,这节课我们一起来学习倒数的认识(板书)。

  一、 探索新知

  1.师:(课件出示)同学们请看大屏幕,谁能准确的说出结果。(学生回答)

  师:同学们计算的真准确,那同学们请观察算式,你有什么发现?

  (先独立思考,然后小组讨论交流)

  2.找学生汇报。

  生:乘积都是1.

  师:其他同学还有没有其他意见。

  生:我发现分子、分母位置是颠倒的。

  师:在数学中我们把乘积是1的.两个数互为倒数。(板书)

  师:例如 倒数的认识的教学设计 和 倒数的认识的教学设计 互为倒数, 倒数的认识的教学设计 的倒数是 倒数的认识的教学设计 , 倒数的认识的教学设计 的倒数是 倒数的认识的教学设计 。

  师:同学们一起读一下。(学生齐读)

  师:那谁来用刚才的方法来说一说第二道题。(学生回答)

  师:5 × 倒数的认识的教学设计 那这个算数谁来说说?(学生回答)

  师:通过刚才的学习,想一想,互为倒数的两个数有什么特点?

  生回答,教师总结(课件出示)

  二、 深入讨论

  (课件出示)同学们请看,下面那两个互为倒数?

  学生回答。

  师:(课件出示)同学们讨论一下:1的倒数是多少?0有没有倒数,为什么?(同学们互相讨论一下)

  学生汇报讨论结果。

  师:通过刚才的讨论以及前面学习的,说一说怎样求一个数的倒数?

  找学生回答,教师总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。(同学齐读)

  师:同学们刚才学习的你们会了吗?

  生:学会了。

  三、巩固练习

  师:那老师来考考你,同学们请看下面的题(课件出示)。

  老师找学生回答。

  四、 课堂小结

  1.这节课你学到了什么?

  2什么是倒数?怎样求一个数的倒数?(课件展示)

  五、 课后作业

  数学书29页练习六1、2、3题

  六.板书设计

  倒数的认识

  乘积是1的两个数互为倒数。

  求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

【倒数的认识教学设计】相关文章:

《倒数的认识》教学设计02-17

倒数认识教学设计02-17

倒数的认识教学设计01-03

倒数的认识教学设计11-02

倒数的认识的教学设计12-08

倒数的认识优秀教学设计04-18

《倒数的认识》教学设计15篇02-17

《倒数的认识》教学设计(精选20篇)12-24

《倒数》教学设计05-07