《倒数的认识》教学设计(通用19篇)
作为一名教师,总不可避免地需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的《倒数的认识》教学设计,仅供参考,欢迎大家阅读。
《倒数的认识》教学设计 1
教学内容:
新人教版六年级数学上册第28页的例1。
教学目标:
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
教学重点:
理解倒数的意义,学会求倒数的方法。
教学难点:
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
教学准备:
多媒体课件。
教学过程:
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的`数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1、讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7
所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
(一)填一填。(出示课件)
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的倒数一定是()。
(二)判断题。(演示课件)
1、5/3是倒数。()
2、因为3/4×4/3=,所以4/3是倒数。()
3、真分数的倒数大于1,假分数的倒数小于1。()
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()
(三)说一说。(课本第29页的第3题)
五、课堂小结:
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
倒数的认识
乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。
2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
《倒数的认识》教学设计 2
学习内容:
人教版义务教育教科书数学六年级上册P28—29
学习目标:
(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。
(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。
学习重点:
倒数的意义、特点和求倒数的方法。
学习难点:
1和0的.倒数的求法。
学习过程:
一、创设情境,激趣导学。
1、出示算式,找特征。
先计算,再观察,看看有什么规律。
×=1×=15×=1×12=1
问:“你发现了什么?”
2、引出倒数的定义。让学生看书。
3、揭题:今天我们就来学习“倒数的意义”(板书课题)。
二、独学质疑,合作探究。
1、初步理解
我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”
这句话还可以怎么说?的倒数是,的倒数是。
你能照样子,结合黑板上的例题,说说算式中两数之间的关系吗?
2、判断,加深理解
(1)判断正误,并说明理由。
a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)
b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)
c.xx=1,所以、互为倒数。(关注了倒数中的关键词“两个数”)
小结:对于概念的学习,应该充分关注概念中的关键词语。
(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?
三、点拨互动,应用提升。
1、出示例2,找一找哪两个数互为倒数?
2、学生汇报找的结果,并说说怎样找的?
(1)看两个数的乘积是不是1。
(2)看两个数的分子与分母是否交换了位置。
3、根据寻找出的结果,探究倒数的特点。
4、这两种方法,哪一种比较快?
5、设问:1和0有没有倒数?如果有,是多少?
(1)分组讨论。
(2)学生汇报。
四、检测诊断,总结评价。
1、基本练习:完成教科书P28的做一做,然后集体订正。
2、加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。
《倒数的认识》教学设计 3
教学目的:
1、使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2、培养学生的观察能力、数学语言表达能力、发现规律的能力等。
教学重点:
求一个数的倒数的方法。
教学难点:
理解倒数的意义,掌握求一个数的倒数的方法。
教学准备:
教学光盘
课前研究:
自学课本P50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
教学过程:
一、作业错例分析。
二、学习分数的倒数:
1、出示例7
学生在自备本上完成,指名核对。
教师板书: ×=1× =1× =1
2、你能模仿着再举几个例子吗?
学生回答,教师板书。
3、观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和 互为倒数,也可以说的倒数是 ,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4、你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5、观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6、合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的`倒数,并交换练习。
三、学习整数的倒数:
1、电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×( )=1,再得出结果。
2、那1的倒数是多少?(1)
3、0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)
4、分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?
0.25 0.1 的倒数是多少?如何求的?
5、练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。
学生独立完成,集体核对。
四、巩固练习:
1、练习十第1题
学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法
2、练习十第2题
学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。
3、练习十第3题
学生独立填空后集体订正。
4、练习十第4题
写出每组数的倒数。说说有什么发现?
第1组中都是真分数,倒数都是大于1的假分数。
第2组中都是大于1的假分数,倒数都是真分数。
第3组中都是一个分数的分数单位,倒数都是整数。
第4组中都是非0的自然数,倒数都是几分之一。
5、练习十第5题:
学生独立完成。说说怎样求正方体的表面积和体积。
6、练习十第6题
学生独立列式解答后,辨析。
两题中分数的不同意义:
第一题中的表示两个数量间的倍比关系,要用乘法计算。
第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。
7、思考题
学生小组讨论,指名交流。
按钢管的长度分三种情况考虑:
(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;
(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;
(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。
五、课堂总结:
今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?
《倒数的认识》教学设计 4
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:
倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:
熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:
写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的`共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0.2的倒数是0.25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0.2=1/5,想:0.2=1/5,1/5的倒数是5,所以0.2的倒数是5.0.25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/310。8(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。()
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
《倒数的认识》教学设计 5
教学内容:
北师大版小学五年级数学下册第31~32页
教学目标:
1、能清楚地知道倒数的概念,能求一个数的倒数。
2、培养学生动手动脑能力,以及判断、推理能力。
3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。
教学重点:
能求一个数的倒数。
教学难点:
在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。
教学准备:
多媒体课件
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
二、新知探索:
1、研究倒数的意义
乘积等于1的两个数叫做互为倒数。
倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)
(b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)
(c.以“带分数”为例;带分数的倒数是真分数。)
(d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e.以“整数”为例;整数相当于分母是1的假分数)
学生举例的`过程同时将如何寻找倒数的方法也融入其中。
3、讨论“0”、“1”的情况:
1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:
(除了0以外)你认为怎样可以很快求出一个数的倒数?
三、反馈巩固:
多媒体出示:
1、写出下面各数的倒数:
3/4、9/5、6、1、0、5、1.5这组数中,你最喜欢求哪个数的倒数?最不喜欢求哪个数的倒数?为什么?
2、判断:
(1)互为倒数的两个数的乘积一定等于1。()
(2)2和它的倒数的和是?()
(3)假分数的倒数是真分数。()
(4)小数的倒数大于1。()
(5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()
(6)a的倒数是?()
(让学生用手势判断,进行辨析,训练说理能力。)
3、游戏:找朋友
一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。
四、全课总结,自我评价。
提问:通过这节课,你学到哪些知识?
《倒数的认识》教学设计 6
教学目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。
2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。
教学重点:
理解倒数的意义,掌握求倒数的方法。
教学难点 :
熟练写出一个数的倒数。
教具准备:
多媒体课件。
教学过程:
一、情境导入。
1、口算。
5/12x2/5 = 15/7 x7/5 = 11/8 x8/13 =
5/21x1/5 = 3/16 x7/3 = 8/21 x7/8 =
先独立考虑,再指名口算订正。
2、比一比,看谁算得又对又快:
2/3x3/2 = 2x1/2 = 11/8 x8/11 =
1/10x10= 7/9x9/7 = 1/7x7=
6/5x5/6 = 1/5x5 = 22/35x35/22 =
同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。
【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】
二、合作探索。
1、小组合作交流:
(1)和同桌说一说你的发现。
(2)请你自身举出3个像上面这样的乘法式子。
小组代表说说有什么发现。指名说说自身举出的例子。
教师:像这样的乘积是1的两个数我们说它们的.关系是互为倒数。
教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)
教师:书上又是怎样讲解倒数的呢?我们一起来读一读。
阅读教材,进一步理解。
教师:现在谁来说一说自身是怎样理解倒数的?
同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。
出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。
【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的自主学习能力,同时,在合作交流的过程中,培养同学的独立考虑和合作探究意识。】
2、强化概念理解。
你认为下面这两种说法是否正确?
(1) 2/3 是倒数。
(2) 得数是1的两个数互为倒数。
同学先独立考虑,再口答,说明理由。
【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】
《倒数的认识》教学设计 7
教学内容:
数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:
理解倒数的意义和怎样求一个数的倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数。
一、游戏导入
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)
二、探究意义
找特点
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒 )
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1 )师及时板书
师:谁还能很快说出乘积是1的两个数吗?
(生回答)
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)
师:那么乘积是1 的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1 的两个数叫互为倒数)
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/5 7/2 8/6 5/12 10/4
(指名回答师板书)
师:你们是怎么找出每个数的倒数的?
(说自己的方法)
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:6 0.5 2 7/8 1
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论
0为什么没有倒数?(0和任何数相乘都不得1)
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)
四、小结并揭示课题
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空
1、乘积是()的两个数叫()倒数。
2、因为7/15 x 15/7 =1 所以7/15和15/7( )
3、 5的倒数是( )。 0.2的倒数是( )。
4、()的倒数是它本身。()没有倒数。
5、8×()=1 0.25×()= 1
()×2/3=1 7/2×( )=( )×8=( )×0.15 =1
2、当把小医生。
1、得数是1的两个数叫互为倒数。()
2a是一个整数,它的倒数一定是 1/a 。()
3、因为2/3×3/2=1,所以2/3是倒数。()
4、1的倒数是1,所以0的`倒数是0。()
5、真分数的倒数都大于1。()
6、2.5和0.4 互为倒数。()
7、任何真分数的倒数都是假分数。()
8、任何假分数的倒数都是真分数。()
3、面各数的倒数
2.5 4 1/8 2 6/7 0.12
4、列式计算
1、7/6加上它的倒数的和乘2/3,积是多少?
2、 1减去它的倒数后除以0.12,商是多少?
3、已知A×3/2=B×3/5,(A、B都是不为0的数)
求A、B的大小
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
《倒数的认识》教学设计 8
教学内容:
人教版六年制小学数学课本第十一册《倒数的认识》。
教学目标:
1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。
教学想法:
去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的'态度和学习方法,从而提高课堂的效率。
一、直接导入,展示目标。
1、出示课题:倒数的认识。
看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。
2、是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)
二、研究学习,到达目标。边学边练
1、自学教材5分钟,尝试做一下书本的练习题。教师巡视。
把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)
2、概括“倒数”的意义。
下定义:乘积是1的两个数互为倒数。
尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。
3、怎样求一个数的倒数?
你能找出与这些数互为倒数的数吗?
4、穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。
小结方法:谁发现了求一个数的倒数的方法?
特例:0没有倒数?
5.作业指导。求一个数的倒数的过程。
求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?
小红:3/5=5/3
小明:3/5的倒数是5/3。
6、当堂作业:P24的做一做。P25的第4题。做在书上。
三、拓展目标,巩固提高。
1、判断:(对的在括号里打“√”,错的打“×”)
2、开放性填空。(假定法)
四、自主小结,延伸目标。
谈谈自己的收获和学习体会。
教后反思:
1、教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。
2、体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。
3、五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。
《倒数的认识》教学设计 9
教学内容:
教科书第50页例7及相应的练习
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、培养学生举例、观察、比较、抽象概括能力。
3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入
分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)
二、教学新课
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的'倒数
1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7
2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究
a四人为一小组,选择一种情况研究
b生交流汇报,师板书例子
c引导概括求倒数的方法
3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)
4、归纳如何求一个数的倒数
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
《倒数的认识》教学设计 10
教学目标:
1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学过程:
一、情境导入,引出问题
1. 谈话理解“互为”。
师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?
让一名学生(甲)说出自己的好朋友是谁?(乙)
师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2. 游戏,按规律填空。
吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )
(1 )学生观察填空,指名回答,并说出是怎么样想的。
(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的认识。
5. 师:看到这个课题,大家想提什么问题?
根据学生回答,选择板书。如:
(1 )什么是倒数?
(2 )怎么样求一个数的倒数?
(3 )认识倒数有什么作用?……
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、 合作探究、解决问题
1. 探究倒数的意义。
(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?
(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?
(3 )小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
A :分子、分母相互调换位置的两个数叫做互为倒数。
B :乘积是1 的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)
2. 探究求倒数的方法。
(1 )学习例1 :写出7/8 、5/2 的倒数。
A :学生试写,教师巡视,提醒书写格式。
B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
C :学生交流求一个分数倒数的方法。
(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A :学生选择一种研究,教师巡视指导。
B :学生交流汇报,教师分别板书一例。
C :引导学生概括求倒数的方法。
(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。
1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?
1 的倒数是它本身,0 没有倒数。
求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1. 下面哪两个数是互为倒数。
4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8
2. 写出下面各数的倒数。
4/11 , 16/9 , 35 , 15/8 , 1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3. 争当小法官,明察秋毫。
(1 )1 的倒数是1 。(2 )所有的数都有倒数。
(3 )3/4 是倒数。(4 )A 的倒数是1/A 。
(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。
(6 )7/5 的倒数是7/2 。
(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。
(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。
4. 填空。
3/4 ×( )=1 7 ×( )=1
2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1
5. 游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的.经验。
五、布置作业。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
《倒数的认识》教学设计 11
教学目标:
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
教学重点:
理解倒数的含义,掌握求倒数的方法。
教学难点:
掌握求倒数的方法。
教学过程:
一、导入
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的'数——倒数。
二、教学实施
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
4、求倒数的方法。
(1)出示例1、
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1—5题。
三、课堂作业设计
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是(),()的倒数是六分之七。
(2)10的倒数是(),()的倒数是1。
(3)二分之一的倒数是(),()没有倒数。
《倒数的认识》教学设计 12
学习目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
教学重点:
求一个数倒数的方法。
教学难点:
1和0倒数的问题。
教学过程:
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!
一、导入:
同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)揭示倒数的意义
(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)
师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法
1、出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2、师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3、出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的'两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4、探讨带分数、小数的倒数的求法
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:
发现1:带分数的倒数都(小于)本身;
发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1、想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2、(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结
今天学习了什么?我们一起回顾总结出来好吗?
什么叫倒数?怎样找出一个数的倒数?
《倒数的认识》教学设计 13
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:
理解倒数的意义,求一个数的倒数。
教学难点:
从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的'?
如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1.25 1.2 0
学生独立完成,然后交流。
《倒数的认识》教学设计 14
教学目标:
1、通过独立计算以及小组讨论等活动认识倒数,理解倒数的意义,能准确的说出,互为倒
数的两个数乘积为一,并且相乘的两个数分子、分母颠倒了位置
2、通过合作交流探讨出求一个数的倒数的方法,并能正确的`求出一个数的倒数。
3、在探究交流的活动中,提高观察、抽象、概括的能力,发展数学思维。
教学重点:
认识倒数并能准确的求一个数的倒数。
教学难点:
小数求倒的方法
教具准备:
课件
教学流程(师生活动)设计
备课组成员
修改意见
一、创设情境,提出问题。
1、师:请同学们完成一下计算:
2、组织学生观察以上算式,说出你的发现。
3、你还能再列举出其他类似的算式吗?
4、师:乘积是1的两个数之间存在着一种特殊的关系——互为倒数。
今天我们就一起来认识倒数,研究倒数。
二、探索交流,解决问题。
①倒数的意义
问题 1:请认真阅读课本第 28 页例 1 以上的部分,然后告诉老师
什么是倒数?互为倒数的两个数有什么特点?“互为”两个字又是什么
意思?先独立思考,然后小组讨论。
生汇报,师引导交流评价。
【随堂小测 1】第 29 页第 2 题的(1)( 2)题
②求一个数的倒数
问题 2:通过交流、探讨,你发现怎样才能正确的求一个数的倒数?
独立思考后,小组间讨论。
【随堂小测 2】第 28 页做一做
问题 3:特殊数 0 和 1 的倒数你会求吗?你有什么发现?
小结:1 的倒数是 1,0 没有倒数。
问题 4:0.45 的倒数你会求吗?说说你的思考过程。
独立思考后,小组间讨论。
【随堂小测 3】第 29 页第 2 题的(3)( 4)
思考:互为倒数的两个数有什么特点?如何求整数的倒数?如何求
分数的倒数?
三、巩固应用,内化提高 。
四、回顾整理,反思提升。
通过这节课的学习,你有什么收获?有什么感受
板书设计
《倒数的认识》教学设计 15
教材分析
倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。
学情分析
倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
概括倒数的意义与求法。
教学难点:
理解“互为”、“倒数”的含义。
教学过程:
一、谈话引入
师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?
生:握手
师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。
(师生共同表演握手的动作)
师:握手是几个人的事情呢?
生:两个人
师:通过今天的相处,我们互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?
生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的.秘密。(拿出作业本帮助你)
二、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。
(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)
三、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?
(先把带分数化成假分数,再求它的倒数。)
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
四、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
六、全课小结。
同学们,今天这节课你有什么收获?
板书设计
倒数
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,就是将分子、分母交换位置。
1的倒数是1;0没有倒数。
《倒数的认识》教学设计 16
教学内容
教科书第28~29页例1、“做一做”及相关内容。
教学目标
1、使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2、使学生体验找一个数的倒数的方法,会求一个数的倒数。
3、在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点
理解倒数的意义;求一个数的倒数。
教学难点
理解“互为倒数”的含义。
教学准备
教学课件、写算式的卡片。
教学过程
具体内容 修订
基本训练,强化巩固。(3分钟)
1、出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2、学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。(2分钟)
请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。(1分钟)
通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。(6分钟)
1、观察这些算式,如果将它们分成两类,怎样分?
2、通过观察发现算式的特点。
展示成果,体验成功。(4分钟)
让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。(8分钟)
1、学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的`分子和分母正好颠倒了位置。
2、认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3、引导学生思考:互为倒数的两个数有什么特点?
4、探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
《倒数的认识》教学设计 17
教学内容:
教科书第24页例1、例2及“做一做”。
教学目标:
1.使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。
教学过程
一、口算练习,唤醒对1的探究热情
A①×=②×=③×32=④×=
⑤×=⑥62×=⑦×=⑧×=
⑨×=⑩×=
B①×1=②×1=③×1=④×1=
⑤×1=⑥1×=⑦1×=⑧1×=
⑨1×=⑩1×=
C①÷1=②÷1=③÷1=④÷1=
⑤÷1=⑥÷1=⑦÷1⑧÷1=
⑨÷1=⑩÷1=
(课前,将三组口算练习题分别发给同桌两人,其中把A发给坐在右边的学生,把B、C发给坐在左边的学生))
师:请同学们拿出课前发的口算练习卡,现在我们来进行一个口算比赛,做完后请起立,两分钟时间,现在计时开始。
之后让学生思考为什么做两组的比做一组的还快呀?学生交流后,再屏幕出示口算题让学生找找原因。
师:看来秘诀就在1这个数上。1在运算中有一些特点,任何数乘1还得原数,如果除以1,也是这样。所以这个1,在数学运算中有自己独特的地方。板书:1想一想,谁除以谁会等于1呢?能用最简洁的语言概括一下吗?
二、观察比较,抽象概念
提问:谁乘谁等于1呢?板书:×()=1
在练习本上写几组乘积是1的算式,时间1分钟,看看谁写得多。
交流:把学生的算式分类排列。(整数、分数、小数)
小结:3个臭皮匠赛过诸葛亮,集中大家的智慧,让我们把问题考虑的更全面。
观察:这些等于1的乘法算式,因数有什么特点?
预设:
1、在有分数的算式里,分母和分子都颠倒了。(他用了一个词颠倒,很好的概括了这些因数的特点。这样的两个分数相乘都等于1吗?能不能再举出一些例子来?)真的很有意思,分子分母颠倒过来的两个数相乘等于1.在数学上,知道这样的'两个数叫什么吗?(板书:倒数)
2、很形象,分子分母交换了位置,通俗的讲就是倒过来了。那现在谁能简练的概括一下,什么是倒数?(板书:乘积是1的两个数互为倒数。)
理解:
在倒数的意义中,你觉得哪些词比较重要?为什么?
预设:
①乘积是1,强调了只能是乘法计算的结果,加法、减法、除法的结果是1的两个数就不能说是互为倒数。
②两个数也很重要,它告诉我们不能是3个、4个或更多个数的乘积,只能是两个数的乘积是1.
③互为也很重要,互为是互相的意思,表示两个数之间的一种关系,一个数不能叫倒数。
练习:
现在我们通过几道小练习来检测一下大家是否弄清了倒数的意义。
1、×()=1
2、判断:
①因为×=1,所以是倒数,也是倒数。()
②xx=1,所以、互为倒数。()
③×的乘积为1,所以与互为倒数。()
三、运用概念,探究方法
提出问题:
我们理解了什么是倒数,那给一个数,你会找它的倒数吗?同桌两个人互相出数,然后想一想,怎样求这些数的倒数?
全班交流:
①分数(多找几对同桌先交流结果,再说一说找分数倒数的方法)
②整数(化成分母是1的分数,然后交换分子和分母的位置或用1除以这个数)有研究1的倒数的吗?0呢?
③小数(先化成分数,然后交换分子和分母的位置)
质疑:
有研究带分数的吗?带分数怎样找倒数呢?(举例验证,总结方法。)
四、分层练习,形成能力
1、写出下面各数的倒数。(课本24页做一做)
预设:学生可能会出现=
2、若m×=1,则m=()。
3、任何真分数的倒数都是()。
A真分数B假分数C不确定的数
4、游戏:找朋友。
①请4个同学到台上,给每人戴上一顶帽子,上面有0.5、2各数,本人看不到自己头上的数,但可以看到其他三个人的。
②5个不同的数:1、3,每个数的倒数都在其中。
五、回顾全课,总结提升
今天这节课,你有什么收获?
师:同学们在动脑思考、合作交流中知道了什么是倒数,并知道了求一个数倒数的方法,还发现了两个特殊的数:1的倒数是1,0没有倒数。希望同学们在学习中能坚持善于观察、勤于动脑的好习惯,探索更多的数学知识。
《倒数的认识》教学设计 18
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:
掌握求倒数的方法。
教具准备:
多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、口算:
(1)xx 6x40
(2)xx3xx80
2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、课件出示知识目标:
(1)什么叫倒数?怎样理解“互为”?
(2)怎样求一个数的倒数?
(3)0.1有倒数吗?是什么?
2、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的两个数互为倒数。
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
3、教学求倒数的方法。
(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
4、教学特例,深入理解
(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
5、同桌互说倒数,教师巡视。
三、当堂测评
1、练习六第2题:
2、辨析练习:练习六第3题“判断题”。
3、开放性训练。
3/5×( )=( )×4/7=( )×5=1/3×( )=1
四、课堂总结
你已经知道了关于“倒数”的哪些知识?
你联想到什么?
还想知道什么?
设计意图
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的.意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
教学后记
第十一、十二课时:整理和复习
《倒数的认识》教学设计 19
教学目标
1、学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2、学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3、培养学生的观察能力和概括能力。
教学重点和难点
1、正确理解倒数的意义及“互为”的含义。
2、正确地求出一个数的倒数。
教学过程设计
一、创设情境,提出问题。
师:我们知道语言文字中有些字是可以倒过来写的。
比如:吴—吞
学生举例:杏—呆。
师:数学中有没有这种情况呢?
你能把4/7倒过来写吗?
板书:4/7--(7/4)8/3--(3/8)2--(1/2)
师:你能根据分子、分母的位置关系给这几组数取个名字吗?
生:倒数。
出示课题:倒数的认识。
二、教学倒数的意义.
(1)5/8×1/8 7/15×5/7 6×1/2 1/40×5
(2)3/4×4/3 6/7×7/6 3×1/3 2/9×9/2
教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都不是1,第二组每个算式中两个数相乘的积都是1.)
教师:“像第二组这样,乘积是1的两个数叫做互为倒数.”
教师举例说明什么叫做“互为倒数”.
3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.
教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数.”
让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让学生说出“互为倒数”,同时,让学生明确谁是谁的倒数.
教师:“谁还能举出几组两个数互为倒数的例子?”多让几个学生说一说,并让学生根据倒数的意义来检验是不是正确.
三、教学例题(求倒数的`方法).
教师:“请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?”让学生适当讨论,并对发现的规律
进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.
出示例题.“怎样找出的倒数呢?你能用刚才发现的规律找出来吗?”使学生想到只要把的分子、分母调换位置就是的倒数.教师板书:
分子、分母调换位置
─────────→
的倒数就可以让学生自己写.
教师接着问:“自然数5的倒数是多少?5可以看成分母是几的分数?”(可以看成分母是1的分数.)
“那么5的倒数怎样求?”(把分子、分母调换位置,3的倒数就是1/5.)
教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以这个自然数作分母以1作分子的分数.)
接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)
“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)
教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师注意提醒学生把排除在外.
四、课堂练习。
写出下面各数的倒数:
4/13 9 1/7 25
反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。
【《倒数的认识》教学设计】相关文章:
倒数的认识教学设计07-04
《倒数的认识》教学设计07-04
《倒数的认识》的教学设计11-23
倒数的认识的教学设计12-08
倒数认识教学设计02-17
倒数的认识教学设计11-02
倒数的认识教学设计01-03
倒数的认识优秀教学设计04-18
小学数学《倒数的认识》教学设计06-27