- 相关推荐
倒数认识教学设计
作为一名辛苦耕耘的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以更好地组织教学活动。写教学设计需要注意哪些格式呢?以下是小编帮大家整理的倒数认识教学设计,欢迎阅读与收藏。
倒数认识教学设计1
教学目标:
1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学过程:
一、情境导入,引出问题
1. 谈话理解“互为”。
师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?
让一名学生(甲)说出自己的好朋友是谁?(乙)
师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2. 游戏,按规律填空。
吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )
(1 )学生观察填空,指名回答,并说出是怎么样想的。
(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的'认识。
5. 师:看到这个课题,大家想提什么问题?
根据学生回答,选择板书。如:
(1 )什么是倒数?
(2 )怎么样求一个数的倒数?
(3 )认识倒数有什么作用?……
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、 合作探究、解决问题
1. 探究倒数的意义。
(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?
(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?
(3 )小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
A :分子、分母相互调换位置的两个数叫做互为倒数。
B :乘积是1 的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)
2. 探究求倒数的方法。
(1 )学习例1 :写出7/8 、5/2 的倒数。
A :学生试写,教师巡视,提醒书写格式。
B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
C :学生交流求一个分数倒数的方法。
(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A :学生选择一种研究,教师巡视指导。
B :学生交流汇报,教师分别板书一例。
C :引导学生概括求倒数的方法。
(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。
1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?
1 的倒数是它本身,0 没有倒数。
求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1. 下面哪两个数是互为倒数。
4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8
2. 写出下面各数的倒数。
4/11 , 16/9 , 35 , 15/8 , 1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3. 争当小法官,明察秋毫。
(1 )1 的倒数是1 。(2 )所有的数都有倒数。
(3 )3/4 是倒数。(4 )A 的倒数是1/A 。
(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。
(6 )7/5 的倒数是7/2 。
(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。
(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。
4. 填空。
3/4 ×( )=1 7 ×( )=1
2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1
5. 游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
倒数认识教学设计2
【教材依据】
倒数的认识是义务教育课程标准试验教科书北师大版小学五年级数学(下册)第三单元中的第一节课内容。
【设计思路】
1、指导思想:
让学生通过文字游戏感受民族语言文字的美,激发学生学习新知的热情,进一步利用同桌关系让学生理解“互为”的含义。自然地引领学生进入到数学王国,理解倒数的概念。利用倒数的概念学会找一个数的倒数的方法。
2、设计理念
本节课内容与学生以前所学的知识联系不大,学生也很容易接受和理解,因此在设计本节课内容的时候,主要从学生的生活实际出发,利用游戏来调动学生学习的积极性,让学生在玩游戏的过程中掌握本节课的知识点,尽量分散难点,突出重点,这样学生容易接受。 3、教材分析
本节课的内容是倒数的认识,主要是让学生了解倒数的概念,能正确的找一个数的倒数,知道1的倒数是1,0没有倒数。会找小数和带分数的倒数。因此在设计教学的时候,我是一步一步进行深入的,先引导学生认识倒数的概念,理解倒数具备的条件,会找一个数的倒数。(真分数和整数的倒数),紧接着在学生练习的过程中引入小数和带分数,引导学生理解如何找小数和带分数的倒数,从而让学生熟练的掌握找小数和带分数倒数的方法。
【教学目标】
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出一个数的倒数。
(2)能力目标:引导学生学会观察、归纳,培养学生学会在小组内与人交流,与人合作的意识。从而提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:培养学生学习数学的兴趣,探寻数学知识的欲望以及良好的学习习惯。
【教学重点】:倒数的意义与求法。
【教学难点】:1、0的倒数,小数、带分数倒数的求法。
【教学过程】:
一、 创境导课、激发兴趣。
1、 文字游戏:
师:同学们,我们在学习新课之前,来做个文字颠倒游戏,,比如老师说:“人小”,大家可以说“小人”,好不好,有情趣没有?
生:(大声喊道)好!
师:学科
生:科学
师:人人为我,
生:我为人人。
师:上海自来水,
生:水来自海上
师:同学们,刚才的文字颠倒游戏好玩不?
生:好玩。
师:那我们再来玩一种文字游戏,大家听好了,老师说“秦少坤是朱倩倩同学的同桌”,还可以怎么说呢?
生:还可以说“朱倩倩是秦少坤同学的同桌。”
师:老师能不能理解为“秦少坤和朱倩倩同学互为同桌呢?
生:开始有些迟疑,然后回答到“可以”。
板书“互为”
2、 数字游戏:
师:同学们,我们的民族语言文字有这样的美妙,其实在数学王国也存在着这样的美,我们不妨来试试。老师比如说“3/4,大家就来说4/3.
师:6/7
生:7/6
师:8/9
生:9/8
师:像这样6/7和7/6的两个数就互为倒数。
师问:那么什么是倒数呢?谁知道?
生:没人回答。
师:既然大家不知道什么是倒数?我们就先来看一下几道练习题。
二、 探究新知:
(一) 倒数的概念:
1、出示下列习题。
4/5×5/4= 6/7×7/6= 1/8×8= 2/3×3/2= 5×1/5= 2/9×9/2=
(1) 指名学生回答。
(2) 学生观察这些算式有什么特点?
(3) 小组内进行交流。
(4) 各组汇报交流的情况。
(5) 师总结归纳:
①
② 这些算式的乘积都是1. 这些算式中分子和分母都打颠倒了。
2、 学生齐读倒数的概念,理解倒数具备的条件。
(二)、找一个数的倒数的方法:
师:那么我们刚才认识了倒数的概念,如何去找一个数的倒数呢? 生:交换分子和分母的位置就可以了。
师:好,老师现在给大家出几道练习题,大家试试看,能不能正确地找出一个数的倒数。
生:欢呼雀跃(表现出极其热情的表情)。
师:4/5的倒数是( ),5/6的倒数是( ),
0.2的倒数是( ),1 1/2的倒数是( )。
生:相互交流,然后每个小组派出一个代表来汇报交流的结果。 学生汇报:
生A:4/5的倒数是5/4, 5/6的倒数是6/5。
生B:0.2的倒数是1/0.2, 1 1/2的倒数是2. 板书:像这样乘积是1的两个数互为倒数。
生C:我和上面的.同学答案一样。
师:老师可以明确的告诉大家同学B的回答是错误的,那么正确的答案又是多少呢?小数和带分数如何去找它们的倒数呢?
生:叽叽喳喳,没人敢回答。
师:既然大家都不会,老师来告诉大家:小数在找倒数的时候,首先要将这个小数化成分数,然后将分数的分子和分母的位置交换即可。带分数在找倒数的时候,要将带分数先化成假分数,然后交换分子和分母的位置即可。大家会了吗?
生:(齐声回答)会了。
生:再次将刚才做错的题目纠正过来。
师:同学们,老师碰到了一个难题,有人问老师数字0和数字1的倒数是多少?老师有点不知道,大家能帮老师这个忙吗?帮老师找到这个答案,好不好?
生:好
生:小组内交流,然后汇报交流结果。
(二) 特殊数字的倒数:
生1:我们小组一致认为数字0没有倒数,因为0×0=0,根
据倒数的概念判断,乘积是1的两个数才互为倒数,所以我
们认为0没有倒数。
生2:我们小组大家都认为数字1的倒数的1,因为1×1=1,
根据倒数的概念进行判断,乘积是1的两个数互为倒数。所
以1的倒数是1.
师:同学们,你们刚才的表现太棒了,大家说的一点都没错,
看来大家对倒数的概念已经理解了,老师很欣慰。
板书:1的倒数是1,
0没有倒数。
三、 巩固练习:
1、 3/5的倒数是( ), 0.5的倒数是( )。
2、判断:
①、 1没有倒数。( )。
②、0的倒数是0( )。
③、0.4的倒数的2/5( )。
四、 拓展练习:
列式计算:
1、4/7乘以它的倒数是多少?
2、1/6乘以2/3的倒数,积是多少?
五、课堂小结:
师:同学们,本节课即将结束,大家在本节课中学到了那些知识?请你用:“我最高兴的是??,令我最思索的是??,令我最想说的是??,令我最满意的是??”中的一句或者多句对本节课进行总结一下。
生1:令我最高兴是本节课我认识了新的一种数-----倒数。 生2:令我最满意的是本节课我不但认识了一种新的数—倒数,而且我学会了找一个数的倒数的方法。
??
五、 作业:
板书设计:
倒数的认识
像这样乘积是1的两个数互为倒数。
1的倒数是1, 0没有倒数。
【有效反思】:
本节课教学自己感觉成功之处是:
1.学生对倒数的概念理解了,知道倒数必须具备的条件是什么,会找一个数的倒数。
2.学生课堂上参与率高,在小组内能和大家相互讨论、相互交流,学会了与人合作的能力。
不足之处是:
1.学生对找小数和带分数的倒数的方法掌握的不够熟练,全班有。
1/3的学生没有很好的掌握这个知识点,需要课后及时进行辅导。
2.本节课在设计练习题的时候没有照顾到学困生的学习,这是本节课不足之处。
倒数认识教学设计3
教学目的:
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
教学重点:求一个数的倒数的方法。
教学难点:理解倒数的意义,掌握求一个数的倒数的方法。
教学准备:教学光盘
课前研究:自学课本P50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
教学过程:
一、作业错例分析。
二、学习分数的倒数:
1.出示例7
学生在自备本上完成,指名核对。
教师板书: ×=1× =1× =1
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和 互为倒数,也可以说的倒数是 ,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×( )=1,再得出结果。
2.那1的倒数是多少?(1)
3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)
4. 分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?
0.25 0.1 的倒数是多少?如何求的?
5.练一练 示范写 的倒数: 的'倒数是 ,明确不能写成 =。
学生独立完成,集体核对。
四、巩固练习:
1.练习十第1题
学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法
2.练习十第2题
学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。
3.练习十第3题
学生独立填空后集体订正。
4.练习十第4题
写出每组数的倒数。说说有什么发现?
第1组中都是真分数,倒数都是大于1的假分数。
第2组中都是大于1的假分数,倒数都是真分数。
第3组中都是一个分数的分数单位,倒数都是整数。
第4组中都是非0的自然数,倒数都是几分之一。
5.练习十第5题:
学生独立完成。说说怎样求正方体的表面积和体积。
6.练习十第6题
学生独立列式解答后,辨析。
两题中分数的不同意义:
第一题中的表示两个数量间的倍比关系,要用乘法计算。
第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。
7.思考题
学生小组讨论,指名交流。
按钢管的长度分三种情况考虑:
(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;
(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;
(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。
五、课堂总结:
今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?
倒数认识教学设计4
【教学内容】
教材P28页中的例1、“做一做”及练习六中的部分练习题。
【教学目标】
1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
【教学重点】
理解倒数的意义,学会求倒数的方法。
【教学难点】
小数与整数求倒数的方法以及0、1的倒数。
【教学方法】
创设情境、启发诱导、合作交流、自学与讲授相结合等。
【教具准备】
课件
【教学过程】
一、激趣引入
师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?
二、新知探究
(一)探究讨论,理解倒数的意义。
1、课件出示算式。
先计算,再观察,看看有什么规律。
3/8×8/37/15×15/75×1/51/12×12
小组汇报交流
2、出示倒数的意义:乘积是1的两个数互为倒数。
3、你是怎样理解“互为倒数”的呢?能举例吗?
4、倒数的表达方式。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
2、互为倒数的'两个数有什么特点?
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
4、辨析:下面的说法对吗?为什么?
A:2/3是倒数。()
B:得数为1的两个数互为倒数。()
C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()
D、0的倒数还是0。()
(三)运用概念。
1、讨论求一个分数的倒数的方法。
出示例1:写出其中3/5和7/2两个分数的倒数。
(1)学生试做并讨论。
(2)生汇报:
(3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。
2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)
3、1的倒数是几?0的倒数是几?
(1)学生试做并讨论。
(2)生汇报:
(3)师生共同小结:1的倒数是1,0没有倒数。
4、小结。
求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。
三、巩固练习
1、写出下面各数的倒数。
4/1116/97/84/1535
2、判断。
(1)真分数的倒数都是假分数。()
(2)假分数的倒数都小于1。()
(3)0的倒数是0,1的倒数是1。()
四、课堂小结
今天我们学习了有关倒数的哪些新知识?
倒数认识教学设计5
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的倒数的求法。
教具准备:课件
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
出示例7
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
师:为什么乘积是1的`两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
师:2/5和5/2的积是1,我们就说??(生齐说)
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数 求带分数的倒数的方法:带分数
三、 分数倒数。 倒数。 假分数
师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1 的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。 )
四、巩固练习
1、打开书,阅读课本P34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是( ) (2)9/7的倒数是( )
2/5的倒数是( )10/3的倒数是( )
4/7的倒数是( ) 6/5的倒数是( )
(3)1/3的倒数是( ) (4)3的倒数是( )
1/10的倒数是( )9的倒数是( )
1/13的倒数是( )14的倒数是( )
由学生说出各数的倒数。然后
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。
4、填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、课堂小结
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计
倒数的认识
乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。
0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小数的倒数的方法: 求带分数的倒数的方法:带分数
分数假分数 倒数。 倒数。
倒数认识教学设计6
教学内容:
课本28页 倒数的认识
教学目标:
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学准备:
PPT课件,卡片
教学过程:
一、情境导入,引出问题
1、列举数学中两个数乘积是1的算式。
2、揭示课题:倒数的认识。
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、合作探究、解决问题
1.探究倒数的意义。
(1)观察刚才列举的例子,找出特点。
(2)出示倒数的意义:乘积是1的两个数互为倒数。
(3)小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)
(4)举例子:3/8×8/3=1,3/8和8/3互为倒数,3/8的倒数是8/3,8/3的倒数是3/8.
(5)口答练习:
2.探究求一个数(分数)的倒数的方法。
(1)小组合作,自学例1。
(2)小组派代表交流例1
(3)学生交流求一个分数倒数的方法。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
(4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×( )=1,所以1的.倒数是1。而0×( )=1呢?
1的倒数是它本身,0没有倒数。
(5)引导学生概括求倒数的方法。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(6)练习:师生对口令,找倒数。
老师说一个数,学生快速抢答出它的倒数。
3、探究求整数、小数、带分数的倒数方法
师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A:学生选择一种研究,教师巡视指导。
B:学生交流汇报,教师分别板书一例。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1.请你填一填。
2.我是小法官。
3.游戏:找朋友。
师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
板书设计: 倒数的认识
乘积是1的两个数互为倒数。
求一个数(0除外)倒数的方法:
把这个数分子、分母调换位置。
倒数认识教学设计7
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的'两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:那么我们就说xx是xx的倒数,反过来(引导学生说)
xx是xx的倒数,也就是说和互为倒数。
xx和xxx存在怎样的倒数关系呢?2和呢?
2、深化理解
提问:
①什么是互为倒数?怎样理解这句话?(举例说明)
②0有倒数吗?为什么?1有倒数吗?什么?
3、求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?
倒数认识教学设计8
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的`字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0。2的倒数是0。25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/310.8(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
倒数认识教学设计9
教学目标:
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
教学重点:
理解倒数的含义,掌握求倒数的方法。
教学难点:
掌握求倒数的方法。
教学过程:
一、导入
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
二、教学实施
1、师:关于倒数,你想知道什么?
2、学习倒数的'含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
4、求倒数的方法。
(1)出示例1、
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1—5题。
三、课堂作业设计
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是(),()的倒数是六分之七。
(2)10的倒数是(),()的倒数是1。
(3)二分之一的倒数是(),()没有倒数。
倒数认识教学设计10
教学目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。
2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。
教学重点:
理解倒数的意义,掌握求倒数的方法。
教学难点 :
熟练写出一个数的倒数。
教具准备:
多媒体课件。
教学过程:
一、情境导入。
1、口算。
5/12x2/5 = 15/7 x7/5 = 11/8 x8/13 =
5/21x1/5 = 3/16 x7/3 = 8/21 x7/8 =
先独立考虑,再指名口算订正。
2、比一比,看谁算得又对又快:
2/3x3/2 = 2x1/2 = 11/8 x8/11 =
1/10x10= 7/9x9/7 = 1/7x7=
6/5x5/6 = 1/5x5 = 22/35x35/22 =
同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。
【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】
二、合作探索。
1、小组合作交流:
(1)和同桌说一说你的发现。
(2)请你自身举出3个像上面这样的乘法式子。
小组代表说说有什么发现。指名说说自身举出的例子。
教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。
教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)
教师:书上又是怎样讲解倒数的呢?我们一起来读一读。
阅读教材,进一步理解。
教师:现在谁来说一说自身是怎样理解倒数的?
同学口答,教师小结:假如两个数的.乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。
出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。
【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的自主学习能力,同时,在合作交流的过程中,培养同学的独立考虑和合作探究意识。】
2、强化概念理解。
你认为下面这两种说法是否正确?
(1) 2/3 是倒数。
(2) 得数是1的两个数互为倒数。
同学先独立考虑,再口答,说明理由。
【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】
倒数认识教学设计11
教学内容:
数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:
理解倒数的意义和怎样求一个数的倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数。
一、游戏导入
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)
二、探究意义
1.找特点
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒 )
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1 )师及时板书
师:谁还能很快说出乘积是1的两个数吗?
(生回答)
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)
师:那么乘积是1 的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1 的两个数叫互为倒数)
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/5 7/2 8/6 5/12 10/4
(指名回答师板书)
师:你们是怎么找出每个数的倒数的?
(说自己的方法)
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:6 0.5 2 7/8 1
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论
0为什么没有倒数?(0和任何数相乘都不得1)
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)
四、小结并揭示课题
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空
1、乘积是()的两个数叫()倒数。
2、因为7/15 x 15/7 =1 所以7/15和15/7( )
3、 5的倒数是( )。 0.2的倒数是( )。
4、()的倒数是它本身。()没有倒数。
5、8×()=1 0.25×()= 1
()×2/3=1 7/2×( )=( )×8=( )×0.15 =1
2、当把小医生。
1、得数是1的两个数叫互为倒数。()
2a是一个整数,它的倒数一定是 1/a 。()
3、因为2/3×3/2=1,所以2/3是倒数。()
4、1的倒数是1,所以0的倒数是0。()
5、真分数的倒数都大于1。()
6、2.5和0.4 互为倒数。()
7、任何真分数的倒数都是假分数。()
8、任何假分数的倒数都是真分数。()
3、面各数的倒数
2.5 4 1/8 2 6/7 0.12
4、列式计算
1、7/6加上它的倒数的和乘2/3,积是多少?
2、 1减去它的倒数后除以0.12,商是多少?
3、已知A×3/2=B×3/5,(A、B都是不为0的数)
求A、B的大小
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的.算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
倒数认识教学设计12
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
教学目标:
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的'快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、 创设活动情景,引入概念
师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。
倒数认识教学设计13
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的'倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
倒数认识教学设计14
学习目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
教学重点:
求一个数倒数的方法。
教学难点:
1和0倒数的问题。
教学过程:
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!
一、导入:
同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)揭示倒数的意义
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)
师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的`分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4.探讨带分数、小数的倒数的求法
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:
发现1:带分数的倒数都(小于)本身;
发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1.想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2.(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结
今天学习了什么?我们一起回顾总结出来好吗?
什么叫倒数?怎样找出一个数的倒数?
倒数认识教学设计15
教学内容:北师大版小学五年级数学下册第31~32页
教学目标:
1、能清楚地知道倒数的概念,能求一个数的倒数。
2、培养学生动手动脑能力,以及判断、推理能力。
3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。
教学重点:能求一个数的倒数。
教学难点:在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。
教学准备:多媒体课件
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
二、新知探索:
1.研究倒数的意义
。乘积等于1的.两个数叫做互为倒数。
。倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2.学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)
(b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)
(c.以“带分数”为例;带分数的倒数是真分数。)
(d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e.以“整数”为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3.讨论“0”、“1”的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4.总结方法:
(除了0以外)你认为怎样可以很快求出一个数的倒数?
三、反馈巩固:
多媒体出示:
1.写出下面各数的倒数:
3/4、9/5、6、1、0、5、1.5这组数中,你最喜欢求哪个数的倒数?最不喜欢求哪个数的倒数?为什么?
2.判断:
(1)互为倒数的两个数的乘积一定等于1。()
(2)2和它的倒数的和是?()
(3)假分数的倒数是真分数。()
(4)小数的倒数大于1。()
(5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()
(6)a的倒数是?()
(让学生用手势判断,进行辨析,训练说理能力。)
3.游戏:找朋友
一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。
四、全课总结,自我评价。
提问:通过这节课,你学到哪些知识?