高中数学教学设计 15篇
作为一位杰出的老师,常常要根据教学需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。一份好的教学设计是什么样子的呢?以下是小编为大家收集的高中数学教学设计 ,仅供参考,希望能够帮助到大家。
高中数学教学设计 1
一、课程说明
(一)教材分析:
此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。
(二) 学生分析:
此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。
(三) 教学目标:
1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。
2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。
3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。
4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。
5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。
(四)教学重点
1让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。
2、能够灵活运用公式并且能把相应公式与题相结合。
(五) 教学难点:
1、让学生掌握公式的推导及其意义。
2如何把所学知识运用到相应的题中。
二、课前准备
(一) 教学器材
对于一对一教教采用传统讲课。一张挂历。
(二) 教学方法
通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。
(三) 课时安排
课时大致分为五部分:
1、联系实际提出相关问题,进行思考。
2以我教她学的模式讲授相关章节知识。
3、让学生练习相关习题,从所学知识中找其相应解题方案。
4学生对知识总结概括,我再对其进行补充说明。 5布置作业,让她课后多做练习。
三、课程设计
(一)提出问题
【引入】
根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?
思考 1 2 3 13579......246810......66666......
这些每一行有什么规律?
(二) 分析问题并讲解
1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的.差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”
2、设首项为 a1 ,公差为d。由思考题 1 2 3可观察出什么?由学生通过她的发现来推导总结出
ana1n1dnda1d
3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。) 例:已知在等差数列{an}中,a520a20xx,试求出数列的通项公式?
通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质
4、由以上公式,性质,让学生总结。
讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。
5总结,串讲当日所学
给出题目:12349899100 让她求其和Sn,并思考如何快速计算?
(三) 布置作业
1、总结当日所学。 2做练习册上章节习题。
3、根据当日所学以及课上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。
四、设计理念
以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。
五、教学设计反思
本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。
高中数学教学设计 2
一.教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的.体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.
培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
高中数学教学设计 3
教学目标
1.掌握等比数列前项和公式,并能运用公式解决简单的问题.
(1)理解公式的推导过程,体会转化的思想;
(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;
2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
教学建议
教材分析
(1)知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.
(2)重点、难点分析
教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的.要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.
教学建议
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.
(4)编拟例题时要全面,不要忽略的情况.
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.
(6)补充可以化为等差数列、等比数列的数列求和问题.
教学设计示例
课题:等比数列前项和的公式
教学目标
(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.
教学重点,难点
教学重点是公式的推导及运用,难点是公式推导的思路.
教学用具
幻灯片,课件,电脑.
教学方法
引导发现法.
教学过程
一、新课引入:
(问题见教材第129页)提出问题:(幻灯片)
二、新课讲解:
记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.
(板书)即,①
,②
②-①得即.
由此对于一般的等比数列,其前项和,如何化简?
(板书)等比数列前项和公式
仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即
(板书)③两端同乘以,得
④,
③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)
当时,由③可得(不必导出④,但当时设想不到)
当时,由⑤得.
于是
反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.
(板书)例题:求和:.
设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.
解:,
两端同乘以,得,
两式相减得
于是.
说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.
公式其它应用问题注意对公比的分类讨论即可.
三、小结:
1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;
2.用错位相减法求一些数列的前项和.
四、作业:略
高中数学教学设计 4
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.
三、学情分析
本节课的`授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
四、教学目标
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.
五、教学重点和难点
1.教学重点
理解并掌握诱导公式.
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式.
六、教法学法以及预期效果分析
高中数学优秀教案高中数学教学设计与教学反思
“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.
2.学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.
七、教学流程设计
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由 ,你能否知道sin2100的值吗?引如新课.
设计意图
高中数学优秀教案 高中数学教学设计与教学反思
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.
(二)新知探究
1. 让学生发现300角的终边与2100角的终边之间有什么关系;
2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3.Sin2100与sin300之间有什么关系.
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.
(三)问题一般化
探究一
1.探究发现任意角 的终边与 的终边关于原点对称;
2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角 与 的三角函数值的关系.
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值.
(1). ;(2). ;(3). .
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形
由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究
高中数学教学设计 5
教学准备
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并规定0向量与任何向量的'数量积为0。
×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。
高中数学教学设计 6
一、问题导入,引发探究
师:我在旅游时买回来一种磁性蛇蛋玩具(如图),所谓生活处处皆学问嘛,我把它运动过程中的轴截面用图形计算器做出了以下有趣的现象:
两个全等的椭圆形卵,相互依偎旋转(动画)。你能通过所学解析几何知识,构造出这种有趣的现象吗?
二、实验探究,交流发现
探究1:卵之由来——椭圆的形成
(1)单个定椭圆的形成
椭圆的定义:平面内到两定点、的距离之和等于常数(大于)的点的轨迹叫做椭圆。(即若平面内的动点到两定点、的距离之和等于常数(大于),则点的轨迹为以、为焦点的椭圆。)
思考1:如何使为定值?
(不妨将两条线段的长度和转化为一条线段,即在线段的延长线上取点,使得,此时,为定值则可转化为为定值。)
思考2:若为定值,则点的轨迹是什么?定点与点轨迹的位置关系?
(以定点为圆心,为半径的圆。由于>,则点在圆内。)
思考3:如何确定点的位置,使得,且?
(线段的中垂线与线段的交点为点。)
揭示思路来源:(高中数学选修2—1P497)如图,圆的半径为定长,是圆内一个定点,是圆上任意一点,线段的垂直平分线l和半径相交于点,当点在圆上运动时,点的轨迹是什么?为什么?
(设圆的半径为,由椭圆定义,(常数),且,所以当点在圆周上运动时,点的轨迹是以为焦点的椭圆。)
图形计算器作图验证:以圆与定点所在直线为轴,中垂线为轴建立直角坐标系,设圆半径,,即圆,点,则点轨迹是以以为焦点的椭圆,椭圆方程为。
(2)单个动椭圆的形成
思考4:构造一种动椭圆的方式
(由于椭圆形状不变,即离心率不变,而长轴长为定值,则也要为定值,因此可将圆内点取在圆的同心圆上,当点在圆上动时,即可得到动椭圆。)
图形计算器作图验证:当圆内动点取在圆的同心圆上,运动点,即得到动椭圆。
(3)两个椭圆的形成
观察两个椭圆相互依偎旋转的几个画面,分析两椭圆的位置关系。判断两个椭圆关于对称轴对称,且直线过两椭圆公共点,所以直线为两椭圆的公切线。
因而找到公切线,作椭圆关于切线的对称椭圆即可。
探究2:卵之所依——切线的判断与证明
线段的垂直平分线与椭圆的位置关系
(1)利用图形计算器中的“图象分析”工具直观判断与椭圆的位置关系、设圆上动点,则线段的中垂线的方程为,将动点的横坐标保存为变量,纵坐标保存为变量,随着点的改变,在Graphs中画出相应的动直线、用图形计算器中的“图象分析”工具找出椭圆所在区域内的.直线与椭圆的交点,拖动点,动态观测交点个数的变化,发现无论点在何处,动直线与椭圆只有一个交点,因此判断直线与椭圆相切,并可求出该切点的坐标、也可以将椭圆方程与直线方程联立,用“代数”工具中的solve()求出方程组的解,从而判断根的情况、
(2)证明椭圆与直线相切、
不妨设直线:,其中,,与椭圆方程联立,得,因此
,
将,,代入上式,用“代数”工具中的expand()化简式子,得,所以椭圆与直线相切,切点为、
(3)证明由任意圆上的动点和圆内一点确定的椭圆与线段中垂线均相切(反证法)
因为椭圆是点的轨迹,而点是直线与线段中垂线的交点,所以点既在椭圆上,也在直线上。因此,直线与椭圆至少有一个公共点,即直线与椭圆相切或相交。
假设直线与椭圆相交,设另一个交点为(与不重合)、因为,所以;又因为,
所以为定值,而,矛盾、因此直线与椭圆相切。
探究3:两卵相依——对称旋转椭圆的形成与动画
当圆内动点取在圆的同心圆上,作椭圆关于切线的对称椭圆,运动点,隐藏相关坐标系与辅助圆等图形,呈现两卵相互依偎旋转的有趣效果。
改变一些问题条件,进行深入探究与发现。
探究4:改变点位置,探究点轨迹
(1)曲线判断:利用TI图形计算器作图分析,拖动点,当点在定圆内且不与圆心重合时,交点的轨迹是椭圆;当点在定圆外时,则,交点的轨迹是双曲线;当点与圆心重合时,点的轨迹是圆的同心圆;当点在圆周上时,点的轨迹是是一点(圆心)、
(2)方程证明:圆,设点,可解得点的轨迹方程为
当或时,点的轨迹为圆心;
当且时,点的轨迹方程为
当时,点的轨迹为圆:;
当且时,点的轨迹为椭圆;
当或时,点的轨迹为双曲线。
探究5:改变切线位置,探究由切线得到的包络图形
查阅有关参考书籍,了解圆锥曲线的包络线,并利用图形计算器作出椭圆、双曲线的包络图形,自主探究抛物线的包络线(将定圆改为定直线)。
结论:所谓包络图,就是指有一条曲线按照一定运动规律运动,保留其所有瞬间位置的影像,会有一条曲线能够和该运动曲线所有位置相切,这条曲线就成为该运动曲线的包络线。
探究6:拓展延伸:椭圆切线的几个性质及其应用
性质1:是椭圆的两个焦点,若点是椭圆上异于长轴两端点的任一点,则点的切线平分的外角。
性质1′:点处的法线(过点且垂直于切线)平分。(即为椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上。)
课后探究:阅读数学选修2—1P75阅读与思考——圆锥曲线的光学性质及其应用,了解双曲线、抛物线的光学性质。
练习1:已知为椭圆的左、右焦点,点为椭圆上任一点,过焦点向作垂线,垂足为,则点的轨迹是_____________,轨迹方程是_______________。
解:(1)直观判断:作轨迹
(2)严谨证明:圆的定义
由此得到:
性质2:是椭圆的两个焦点,是长轴的两个端点,过椭圆上异于的任一点的切线,过做切线的垂线,垂足分别为,则在以长轴为直径的圆上。
练习2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线与椭圆相切与点,且到的垂线长分别为,求证:为定值。
解:
(1)直观判断:作图
(2)严谨证明:利用性质2及圆的相交弦性质,
由此得到:
性质3:已知椭圆为,则焦点到椭圆任一切线的垂线长乘积等于。
课后探究2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线过点,且到的垂线长分别为,则
①当时,直线与椭圆的位置关系;(相交)
②当时,直线与椭圆的位置关系。(相离)
(类比直线与圆位置关系的几何法,此为直线与椭圆位置关系的几何法)
课后探究:双曲线、抛物线的切线是否有类似性质?
高中数学教学设计 7
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1。本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2。教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1。以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的`又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
(四)组织讨论:
让学生归纳什么是否命题,什么是逆否命题。
例1及例2
(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真.
原命题真,逆否命题也真
引导学生讨论原命题的真假与其他三种命题的真
假有什么关系?举例加以说明,同学们踊跃发言。
(六)课堂小结:
1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:
原命题若p则q;
逆命题若q则p;(交换原命题的条件和结论)
否命题,若¬p则¬q;(同时否定原命题的条件和结论)
逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)
2、四种命题的关系
(1).原命题为真,它的逆命题不一定为真.
(2).原命题为真,它的否命题不一定为真.
(3).原命题为真,它的逆否命题一定为真
(七)回扣引入
分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:
第一句:“该来的没来”
其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。
第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。
第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。
同学们,生活中处处是数学,期待我们善于发现的眼睛
五、作业
1.设原命题是“若
断它们的真假. ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判
2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.
高中数学教学设计 8
我先来介绍一下参加我们这次讲座的几位嘉宾,我身边这位是苏州五中的罗强校长,这边这位是苏州中学的刘华老师,那边那位是大家熟悉的首都师范大学数学系博士生导师王尚志教授。欢迎大家来到我们研讨的现场!
老师们都知道,素质教育要落实在课堂上,课堂是我们实行数学新课程的主战场,做好教学设计是我们整个高中数学新课程推进的一个关键点。那么,怎样才能做好数学的教学设计呢?我们问过一些老师,大家感觉有些疑惑,比如说有的老师们认为:教学设计是不是就是备备课,写好一个教案、做一个课件,是不是这样?我们想听听来自江苏的老师怎么看这个问题?
罗强:我来谈谈自己对教学设计理论的学习和实践过程中的一些体会。以前我们在教学实践中往往把教学设计变成一种简单的教案设计,但实际上这只是一种经验型的教学设计,没有上升为科学型的教学设计。其实,国际上对教学设计的研究已经进行多年,提出了许多思想、理论、案例,教学设计已经成为一个独立的研究领域。
教学设计理论的发展基本上经历了两个阶段:第一个阶段是突出以“教的传递策略”为中心来进行教学设计的传统教学设计理论,它更接近工程学,遵循设计的规则和程序,强调目标递进和按部就班的系统操作过程,其特点是注重目标细化,注重分层要求,注重教学内容各要素的协调。就好像我们要造一幢房子,先要把这幢房子的图纸设计出来,然后再设计一个施工的蓝图,教学就是按照这样的设计来进行实施的一个过程。
第二个阶段是突出以“学的组织方式”为中心来进行教学设计的现代教学设计理论,它的基础是信息加工理论与建构主义的学习理论,现代教学设计理论强调依据学习任务类型(如认知、情感与心理动作等)来选择教学策略,强调以问题为中心,营造一个能激活学生原有知识经验,有利于新知识建构的学习环境。其特点是问题与环境,强调创设情境,提出问题,营造问题解决的环境,突出学生的自主学习和自主探究。
按照新的教学设计的理论,我们应该以学为中心来进行教学设计,简单的说就是——为学习而设计教学!打个比喻,就是说我们教师好比是导游,带着学生去一个新的景点旅游,那么在这个过程中间,教学设计就是设计这么一个导游图,让学生在参观各个景点的过程中,经历学习这些知识的一种过程。
按照为学习而设计教学的理念,我觉得在教学设计时要考虑三条线索,这样实际上也就构成了教学设计的一种三维结构。第一条线索就是一种数学知识线索。因为教师进行的是学科教学;第二个线索是学生的认知线索。因为学习的主体是学生;第三个线索就是教师的教学组织线索,因为教学过程是通过教师的组织来实现的。比如第一条线索——数学知识,我觉得数学知识实际有三个形态:一是自然形态,它既存在于客观世界中间,实际上也存在于学生的头脑中间;二是学术形态,它是作为数学学科的一种知识体系而存在。那么,我们的教学就是要在数学的自然形态和学术形态的中间架一座桥梁,这座桥梁就是数学的教育形态。因此,我觉得教学设计的本质就是设计好数学的教育形态,教学设计的过程实际上就是构建数学教育形态的一个过程。
通过对教学设计理论的学习,并在实践中反思和总结,我的体会很深。有一位美国学者兰达曾经说过:教学设计是使天才能够做到的事一般人也能去做。我想对教学设计理论的学习是一个大家都要努力的目标。
张思明:刚才罗强老师从理论上分析了什么是教学设计?教学设计应该关注哪些问题?下面我们请刘华老师帮我们分析一下:在你们实验区和老师接触的实践中,你感觉到老师们在教学设计中存在着哪些主要问题?
刘华:我想解剖一个由职初教师,就是刚刚工作的青年教师所提供的一个教学案例。
我先简单介绍一下他的教学设计。这是高一函数单调性的一节起始课,在教学设计中,这个职初教师首先明确了这节课的三维目标,然后他提出了两个生活中的情境,一个情境是生活中的气温图;第二个情境是股票的价格走势图,然后引入新课。接着把函数单调性的概念介绍给学生,紧接着进入了例题讲解阶段,最后是有两个思考题。
我觉得这个教学设计大致存在这样四点比较普遍的问题:
第一个问题就是这位教师在确定课程目标的时候,比较机械地套用了新课程的理念,按照“知识技能,方法与过程,情感、态度、价值观”这样的三维目标来叙述他的本节课目标。在这些目标中,知识与技能的目标还是比较实在的,但“过程与方法”的目标以及“情感、态度、价值观”的目标就比较空洞,流于形式。其实,这位老师对教学目标并没有做深入的分析,这样的教学目标只是一个标签而已,这是第一个问题。
第二个问题是问题情境的设计。好的情境应当是兼顾生活化与数学化,股票的价格走势图这个情境离学生的生活太远,其中还包含了许多股票方面的专门知识,对函数单调性这个数学概念的反映也不够准确,作为本课的情境,不太恰当。
第三个问题就是在情境到数学概念的产生过程中,应当让学生充分体验或参与数学化的探索过程,从而建构起函数单调性这一概念。我们看到在这位教师的设计当中,他忽略了学生活动,尤其是学生思维活动这样一个环节,而是直接把概念抛给了学生。我们认为学生在数学学习中,“过程”相对来说比仅仅接受概念这个“结果”更为重要。
最后一个问题就是我们发现有很多老师认为数学教学设计主要就是习题的设计,这位教师本节课的例题、习题量非常多,而且对这些习题的要求他存在着一步到位的倾向,尤其是他最后抛出来的含字母的函数单调性的探索这个问题,我们觉得在新授课当中这个习题的要求太高了。我觉得老师们在教学设计中主要存在这样几点问题。
张思明:刘华老师谈了一个单调性的案例,对一个新教师的案例做了一个分析,分析出了我们老师在教学设计中常常出现的一些问题。那么面对这样一些问题,我们应该怎么办?我们就以这个案例为出发点,请罗强老师对函数单调性这个课题做了一个分析和再创造的工作,在这个工作中我们可以看到如何通过教师自己的再学习、再认识,设计出一个更好、更适用于学生的教学设计。我们来看一下罗强老师的说课录像。
罗强老师的说课:各位老师大家好,我向大家汇报一下我对函数单调性的教学设计。
首先谈一下我对教学设计的认识。我觉得教学设计的根本目的是创设一个有效的教学系统,这样的教学系统不是随意出现的而是教师精心创设的,没有有效的教学设计就不可能保证教学的效果和质量。教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。
教学设计的首要任务就是明确教学目标,实际上教学目标是教学设计的灵魂和统帅,将指引后续教学设计的方向,决定后续教学设计的具体工作。在制定教学目标的时候,我觉得要把握以下几点:
第一,把握教学要求,不求一步到位。函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用运算的性质研究单调性,知道它的变化趋势;第二阶段用导数的性质研究单调性,知道它的变化快慢。那么高一我们是处在第一个阶段。第二,明确知识目标,落实隐性目标。知识目标往往就是教学的显性目标,确定知识目标的关键在于分清主次轻重,把握好教学要求。根据课程标准的要求,本节课的知识目标定位在以下三个方面:一是理解函数单调性的概念;二是掌握判断函数单调性的方法;三是会用定义证明一些简单函数在某个区间上的单调性。另外这节课的隐性目标我觉得也很重要,因为函数单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观特征到自然语言描述再到数学符号的描述的进化过程,反映了数学的理性思维和理性精神。对高一学生来讲它是一个很有价值的数学教育载体和契机。因此这节课的隐性目标应该包括让学生体验数学知识的发生发展过程,学会数学概念符号化的建构过程。根据刚才的分析,我把教学流程分成了三个阶段:第一个阶段是进行函数单调性概念的数学化过程;第二个阶段是从不同的角度帮助学生深入理解函数单调性的概念;第三个阶段是让学生学会判断,并用函数单调性的定义证明函数的单调性。
第一阶段的教学流程分成三个教学环节。第一,问题情境;第二,温故知新;第三,建构概念。具体如下:
先是创设问题情境。由老师和学生一起举出生活中描绘上升或者下降的变化规律的成语。老师可以启发一下,先说一个“蒸蒸日上”,然后和学生一起举出比如“每况愈下”,“波澜起伏”这样三种描绘不同变化的成语。然后请学生根据上述成语,给出一个函数,并在平面直角坐标系中绘制相应的函数图象。这样设计的意图是让学生结合生活体验用朴素的生活语言描绘变化规律,体会如何将文字语言转化为图形语言。
接下来是温故知新。在刚才学生绘制出的三个函数图象的基础上,我请学生观察它们变化的趋势。在刚才学生绘制的三个函数图象的基础上,再请学生用初中的语言来叙述什么叫图象呈逐渐上升的趋势,也就是“函数值随着的增大而增大”。这样设计的意图是让学生对照绘制的函数图象,用自然语言描述函数的变化规律,重温初中函数单调性的描述定义。
张思明:刚才我们看到了时骏老师的说课,下面我们来听一听嘉宾对这个说课的分析。
罗强:我还是要强调教学设计一定要注意为学习而设计教学。还是拿我刚才的这个比喻,就是教师带学生去旅游。既然是带学生去旅游,首先就要考虑我要带学生到什么地方去?然后需要考虑我怎么才能够带学生到达这个地方?然后我要确定学生是不是真的到达了这个地方?还要注意的是,作为教学的一种延伸,我觉得还应该让学生有兴趣、有能力继续他自己的旅程。我觉得这是我们教学设计要做的主要工作。
张思明:通过以上几个案例,我想老师们对于如何做教学设计有了一个初步的认识。怎样做好教学设计呢?我们也想听一听在教育指导部门的老师的一些想法,我们特别采访了江苏省教研室的`董林伟主任,我们来听一听董主任关于教学设计的思考和认识。
董主任:关于设计这两个词大家应该都非常的熟悉。当人们要从事一项有目的的活动的时候,事先都要有一些设想,要进行一些规划,要进行一些设计。作为我们教学工作者来说,在开始我们的教学活动之前,我们的老师都必须做一项非常重要的工作,那就是教学设计。今天我要谈的就是关于教学设计的话题。我想就三个方面来谈谈我的一些基本想法。第一,我想先谈谈什么叫教学设计?第二,谈谈我们在教学设计过程中应该来设计一些什么?第三,在设计的过程当中我们要注意哪几点?下面我想简要的把这三个方面跟大家做一个交流。
一、关于什么叫教学设计?
所谓的教学设计就是用系统的方法对各种课程资源进行有机的整合,对教学过程中相互联系的各个部分作出整体安排的一种构想。它是一种构想,是一种整体的安排,是我们教师为将来进行的教学勾画的一些图景,它反映了我们的教师对自己未来教学的一种认识和期望。如果通俗一点来说,那么所谓的教学设计可以这样来理解,就是:你要把学生带到哪里去?你怎样把学生带到那里去?你这样做能把学生带到那里去吗?
二、在教学设计过程当中我们应该关注些什么,就是说设计一些什么?
首先,我们必须明确我们的教学目标,教学目标是我们教学根本的指向与核心的任务,是教学设计的关键。教学的目标是教学中师生所预期达到的一种教学效果和标准,因此,明确教学目标就是要明确你要把学生带到哪里去。在确定教学目标的时候,我们要关注以下的几点:第一,整体性。就是要注意这部分内容在整个高中阶段数学教学中的联系,以达到教学的一种连贯性,要正确处理好我们的近期的目标跟远期目标的相互关系。第二,在我们明确目标的时候,要关注它的全面性。新课程对数学教学的目标提出了新的一种要求,三维目标在关注知识结果的同时,更注重对过程目标的关注和对学习者——学生的关注,更关注学生获取数学知识的过程以及在学习中的经历、感受和体验。因此,教师在设计数学教学目标时,应特别注意关注新课程所提出的过程性目标。第三,我们要关注目标的现实性。确定教学目标时,应当注意它与所授课任务的实质性联系,以避免目标空洞、无法落实。我们在设计教学目标时,常见的一种状况是目标过分的大,过分的空洞,那么在落实过程中,就难以达到预设的目标。其次,我们在教学设计中要非常关注学生,要了解学生。我想,以下几个方面,至少老师在教学设计过程中应该心中有数。
第一,在数学方面学生以前做过什么?他在数学活动或者是在数学实验方面,曾经做过什么?这里我们实际上要关注的是学生的活动经验。
第二,不同的学生在思维方式上会有什么不同。实际上就是要在教学中关注我所授课的学生的特点,关注我班学生的构成,班级当中不同群体的学生在思维方面有些什么样的不同。
第三,要初步确定课堂的组织形式,就是说我这一堂课是整个班级一起学习,还是将学生分成若干个组来活动,甚至于是一种个体性的活动,包括开展一些个体性的实验活动,包括自主学习的一种活动方式。组织形式上还要关注这堂课需要利用什么模型?是否需要做适当的课件?或者准备一些相关的硬件设施。这也是我们在确定课堂组织形式是所必须要关注的。
第四,要勾勒教学的一种顺序。这个顺序当中主要包括这样几点:
第一点,应当怎样提出主题,通俗一点讲就是问题情境的创设。关于问题情境的创设,我们在相关的专题中也都提到它的重要性和一些要求。我们在勾勒教学顺序的时候,首先要关注的是怎样提出主题,这个主题应该是跟学生接近的,又要能够引起他的兴趣,又要围绕着我们的教学主题的,而且能够使得学生迅速的进入学习活动中。
第二点,就是要关注是否需要复习以前的相关知识。一堂课的教学它往往不是独立的,而是有前后联系的,因此需要考虑我在这堂课教学中是否需要复习相关的知识?
第三点,当学生对材料产生争论的时候,你准备提出怎样的探索性问题。当我们提出问题以后学生可能会产生什么样的一种思考,可能会产生一种什么样的争论?我们要了解这些争论的思维的背景,需要进行正确的引导,那么你就必须要设计好一些问题串,来引导学生围绕主题展开探索。
第四点,我们在设计教学程序的过程中要关注一下我们使用的材料,我们的课本提出了什么样的观点,使用什么样课外的材料来帮助我们的教学。
第五点,要根据学生对主题的掌握程度,准备几个可以供选择的,课堂当中要自主完成的练习,或者是课后要完成家庭作业。这些是勾勒我们整个教学流程的一些关键程序。
三、教学设计中我们应该注意的方面。
教学设计永远只是教学过程的一种预期,实际的教学活动则永远是一个谜。我们老师都有经验,同样的一个课题,同一个老师的备课,他在不同班的授课过程中都会产生不同的教学流程、教学效果。因为我们所面对的学生是不同的,是在变化的,我们的教学生成是变化的,只有当这堂课教学完成了,我们才能知道这堂课最后的结果。所以前面的教学设计只是一种预期,我们的教学设计就是要关注这样的一种变化。
因此,教学设计首先要注意它的整体性,就是说我们的教学设计不是一种片断,是一种整体的设计,它不是写在我们纸上的一种文本,而是我们教师对自己和学生所持的一种整体性的目标。其次,要注意它的可变性,没有一件事情是丝毫不差地按照计划进行的。学生的思维可能还停留在你认为根本不重要的问题上,他们还会以你几乎不能想象的方式来理解某些概念。当活动过程受到影响时,你必须放弃你原来的教学计划,运用你对学生已有的知识的了解和更宏观的数学教学目标,去指导你的教学行动,也就是说要产生一些生成的问题。第三,要注意它创造性。我们的教师很大程度上会依赖于教材或教学参考书,以确保他们的数学教学内容符合一个内部连贯的发展框架。这种依赖有一定的好处,它能够使得我们的教学设计能够围绕着我们课程的设计来进行,但是同时也存在一些问题,就是说毕竟教材是我们课程的一种呈现,跟教学的呈现还是有着本质差别的。我们的教学设计应该是一种流动的过程,应该适合我们的学生,就像设计师设计的服装要符合你所设计的群体的特点和要求,如果考虑到个体,就要符合他的气质,符合他的整体形象。我们的教学设计也是这样,我想每个人都应该有个人设计的一种思考和魅力。
刚才谈到这几点仅供我们老师做一种参考。
张思明:各位老师,我们这一讲把教学设计中存在的问题通过几个案例给大家做了一个初步的展示。我想教学设计中的问题是一个教学实践过程中产生的问题,我们每一个老师都有自己的设计理念,都有自己设计成功或者不如意甚至失败的地方。我们希望研讨是一个互动的过程,我们真诚的期待着老师们把您们在教学设计中遇到的问题和成功的经验寄给我们,我们一起来研讨。那么这一讲就到这里,谢谢老师们的参与!
高中数学教学设计 9
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的`学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高中数学教学设计 10
一、课题:
人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》
二、指导思想与理论依据:
《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。
三、教材分析:
本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。
四、学情分析:
在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。
五、教学目标:
(一)教学知识点:
1.对数的概念。
2.对数式与指数式的互化。
(二)能力目标:
1.理解对数的概念。
2.能够进行对数式与指数式的互化。
(三)德育渗透目标:
1.认识事物之间的`相互联系与相互转化,
2.用联系的观点看问题。
六、教学重点与难点:
重点是对数定义,难点是对数概念的理解。
七、教学方法:
讲练结合法八、教学流程:
问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)
八、教学反思:
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。
对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。
高中数学教学设计 11
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。
教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。
任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。
对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。
教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称。
从函数值对应表可以看到,当自变量x取一对相反数时,相应的'两个函数值相同。
对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。
2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1奇、偶函数的定义
如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用
[例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;
②对于5要注意定义域x∈1,1]。
2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。
解:1任取x<0,则x>0,∴fx=x1x,
而fx是奇函数,∴fx=fx。∴fx=x1x。
(2)当x=0时,f0=f0,∴f0=f0,故f0=0
3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,
证明如下:
任取x1>x2>0,则x1 ∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。 ∴f(x在0,+∞)上是增函数。 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? [练 习] 1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。 2fx=x3|x|的大致图像可能是 3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。 四、拓展延伸 1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。 3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。 4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 教学准备 教学目标 解三角形及应用举例 教学重难点 解三角形及应用举例 教学过程 一.基础知识精讲 掌握三角形有关的定理 利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题. 二.问题讨论 思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的.情况的讨论. 思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质. 例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。 一. 小结: 1.利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角); 2.利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 3.边角互化是解三角形问题常用的手段. 三.作业:P80闯关训练 一、单元教学内容 (1)算法的基本概念 (2)算法的基本结构:顺序、条件、循环结构 (3)算法的基本语句:输入、输出、赋值、条件、循环语句 二、单元教学内容分析 算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力 三、单元教学课时安排: 1、算法的基本概念 3课时 2、程序框图与算法的基本结构 5课时 3、算法的基本语句 2课时 四、单元教学目标分析 1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义 2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。 3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。 4、通过阅读中国古代数学中的.算法案例,体会中国古代数学对世界数学发展的贡献。 五、单元教学重点与难点分析 1、重点 (1)理解算法的含义 (2)掌握算法的基本结构 (3)会用算法语句解决简单的实际问题 2、难点 (1)程序框图 (2)变量与赋值 (3)循环结构 (4)算法设计 六、单元总体教学方法 本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。 七、单元展开方式与特点 1、展开方式 自然语言→程序框图→算法语句 2、特点 (1)螺旋上升 分层递进 (2)整合渗透 前呼后应 (3)三线合 一 横向贯通 (4)弹性处理 多样选择 八、单元教学过程分析 1. 算法基本概念教学过程分析 对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。 2.算法的流程图教学过程分析 对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。 3. 基本算法语句教学过程分析 经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法, 4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 九、单元评价设想 1.重视对学生数学学习过程的评价 关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。 2.正确评价学生的数学基础知识和基本技能 关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法 一、探究式教学模式概述 1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。 2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。 3、探究式教学模式的特征。 (1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。 (2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。 (3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。 二、教学设计案例 1、教学内容:数字排列中3、9的探究式教学。 2、教学目标。 (1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。 (2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。 (3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。 3、教学方法:谈话探究法,讨论探究法。 4、教学过程。 (1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的'个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点? (2)提出问题。 问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有() A、36个B、18个C、12个D、24个 问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数? (3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。 教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点? 学生:它们都满足“各位数字之和能被9整除”。 教师:此结论的正确性如何? 学生:老师,我们证明此结论的正确性,好吗? 教师:好。 学生:证明:不妨以n是一个四位数为例证之。 设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N) 则n=1000a+100b+10c+d =(999a+a)+(99b+b)+(9c+c)+d =(999a+99b+9c)+(a+b+c+d) =9(111a+11b+c)+9m =9(111a+11b+c+m) ∵ a,b,c,m∈N ∴ 111a+11b+c+m∈N 所以n能被9整除 同理可证定理的后半部分。 教师:看来上述结论正确。所以得到如下定理。 定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。 教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。 学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。 教师:启发学生观察这些数字有何特点?提问学生。 学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。 教师:请学生们继续尝试选取其他数字试一试。 学生:3+4+5+6=18是9的倍数。 教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。 故应选D。 (4)学以致用。 问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数? 教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法? 学生讨论: 学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。 学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。 学生3:第一类:5个数字中无0的五位偶数有。 第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。 学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。 (5)概括强化。 重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。 难点:数字排列知识的灵活应用。 关键:证明的思路以及定理的得出。 新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。 (6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。 总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。 提出问题: 新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。 教材中的地位: 本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。 设计背景: 在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的`引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。 教学目标: 一、知识: 理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。 二、过程与方法: 由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。 三、能力: 1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。 2.通过对指数函数的研究,使学生能把握函数研究的基本方法。 教学过程: 由实际问题引入: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么? 分裂次数与细胞个数 1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x 归纳:y=2x 问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么? 经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y= 寻找异同: 你能从以上的两个例子中得到的关系式里找到什么异同点吗? 共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。 那么,今天我们来学习新的一个基本函数:指数函数 得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。 在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一 般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。 若a 若a=1,则=1,是一个常量,也没有研究的必要。 所以有规定且a>0且a≠1。 由定义,我们可以对指数函数有一初步熟悉。 进一步理解函数的定义: 指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。 研究函数的途径:由函数的图像的性质,从形与数两方面研究。 学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。 首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。 我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。 要求学生描述出指数函数图像的特征,并试着描述出性质。 数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。 虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。 教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。 【高中数学教学设计 】相关文章: 高中数学教学设计07-02 高中数学教学设计14篇07-02 高中数学教学设计15篇12-05 高中数学教学设计(15篇)02-20 高中数学教学设计(精选15篇)03-07 高中数学教育教学叙事随笔07-30 《杯子的设计》教学设计03-14 an教学设计11-23 高中数学教学心得体会05-07高中数学教学设计 12
高中数学教学设计 13
高中数学教学设计 14
高中数学教学设计 15