《圆的面积》教学设计15篇
作为一名无私奉献的老师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那要怎么写好教学设计呢?下面是小编整理的《圆的面积》教学设计,仅供参考,希望能够帮助到大家。
《圆的面积》教学设计1
【教学内容】
义务教育课程标准实验教科书第十一册P69~71例1、例2。
【教学目标】
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:
掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:
理解圆的面积计算公式的推导。
【教学准备】:
相应课件;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的大小是一个什么图形呀?
生:是一个圆形。
师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的`面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
3.求下面各圆的面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂作业。
1、教材P69页“做一做”第2小题。
2、判断题
让学生先判断,并讲一讲错误的原因。
3、填空题
复习圆的半径、直径、周长、面积之间的相互关系。
4、教材P70页练习十六第2小题。
5、完成课件练习(知道圆的周长求面积)
老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。
五、课堂总结
师:同学们,通过这节课的学习,你有什么收获?
六、布置作业
《圆的面积》教学设计2
一、教学目标:
1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
二、教学重点:
圆的面积公式的推导及应用公式计算。
三、教学难点:
圆面积公式的推导。
四、教学关键:
转化前后各部分间的对应关系。
教学过程
一、导入新课:
提出问题:
在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的'范围最大是多少平方米?
请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)
思考:
要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)
生读,教师板书:圆的面积
大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?
二、探索新知:
(一)、先自学课本,小组探讨如下两个问题:(电脑出示)
1、在推导的过程中你发现圆的什么变了?(板书:形状)
2、在推导的过程中你发现圆的什么没变?(板书;面积)
(二)、探讨第一问:
A:多媒体出示16等份圆。
1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。
2、学生小组操作。
3、你会把它变成一个近似长方形吗?学生小组尝试操作。
4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。
5、学生展示操作成果。
B:多媒体出示8等份圆。
1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?
2、学生汇报讨论结果。
3、媒体演示8等份。
C:多媒体出示32等份
1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。
2、眼睛微闭想一想。
3、媒体演示32等份。
D:多媒体演示三幅图综合画面。
1、让学生仔细观察后问:哪一等份更接近长方形?
2、为什么,等份的份数越多就能拼出越接近的长方形。
F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想
学生讨论。
(三)探讨第二问:
A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?
2、长方形的面积就是谁的面积?(教师板书)
3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)
板书:长方形面积=长×宽
圆的面积=圆周长的一半×半径
B:仔细观察多媒体演示问:
1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)
2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)
C:推导出圆的面积并且用字母表示。(教师板书)
D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?
三:课堂练习
1、同座互增一个画好半径的圆,求其面积。
问:先要知道什么条件,再怎样求?
2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?
3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何
解决此问题?
4、根据下面条件,求出各圆的面积。
C=6。28米r=1分米d=20毫米
5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。
课堂延伸
学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?
练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。
四、课堂小结
通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?
《圆的面积》教学设计3
一、教材内容分析
人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。
二、学情分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。
三、教学目标知识与技能
1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
过程与方法1,引导学生经过“感知——动脑——观察——合作探究”等系列活动.逐步培养学生的抽象思维能力。
2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。情感态度与价值观
让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的兴趣 :数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、注重实践操作,有意识地培养学生获取知识的能力 :学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、注重学法指导,有意识地引导学生应用转化的方法 :本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、注重教具和学具的应用,有意识地突破学生学习知识的难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和
教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。
五、教学准备
教学用具,圆形卡片学具
六、教学过程
关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流
一、创设情境,揭示课题
1,创设情境
学校的花坛的半径为10米,我们能求出它的面积吗?
2,揭示课题
为了解决这个问题这节课我们一起学习“圆的面积”好不好?
板书:圆的面积
3,说一说
师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?
生答: 师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。
二、动手操作,实践探究
1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法
2、动手操作,尝试转化
1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?
2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导
3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)
4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?
3、探究联系,推导公式
现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?
1),猜测,再一次观察老师的示范
2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品
3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。
4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。
5),观察,小组讨论得出公式:(板书)
长方形的'面积 = 长 × 宽
圆的面积 = 周长的一半 × 半 径
S =πr ×r = πr2
三、运用公式,解决问题
1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识
2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正 学生独立运用所学知识解答,加深对概念的理解,全班汇报交流 运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。
四、课堂小结
(一)组织交流
回顾一下这节课我们学习的内容。
(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(二)总结
平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、
圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!
七,板书设计圆的面积(1) 长方形的积 = 长 × 宽
圆的面积 = 周长的一半×半 径
S = πr×r = πr2 八、教学评价设计
在本节课的教学中,我在教学评价这一环节力争做到:(一)在探究新知的过程中注重对学生数学学习过程的评价;(二)在复习旧知识时恰当评价学生的基础知识和基本技能;(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。
《圆的面积》教学反思
蕲春县第四实验小学 何国栋 在本节课的教学中,我在教学和设计中充分利用数学和生活的联系,在教学和设计中大胆运用以下环节:1,既然数学源于生活,那么选择学生熟悉的生活场景,使学生感受到所研究的数学知识就在生活中的广泛应用,直观地唤起其已有的知识经验,激发其学习的兴趣,又为新知识的学习做好了准备。 2,启发学生归纳出平面图形的面积公式推导方法,是采用 “割补法”、“旋转平移法”等数学“转化”的思想方法,让学生建立空间概念。 3,注重学生动手操作,让学生在探究中发现知识、理解知识、掌握知识,体现了以学生为主体的思想。尤其是让学生自己“剪”、“拼”,进一步使学生感知圆的边缘是曲线,拼成的图形边缘接近直线。体现了让学生在自我探索、自我发现中获取知识的新理念,这样跟进一步运用学生原有的学习经验,让学生运用转化的思想,把问题化归到原有的知识体系中;利用学生的实践活动,让学生经历知识的形成过程,进而找到推导圆面积公式的方法,获得积极的情感体验;培养学生的探索意识、合作意识及创新意识,引导和帮助学生成为发现者、研究者和探索者,让每个学生各方面
《圆的面积》教学设计4
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的`合作精神和创新意识。
教学重点:
推导出圆的面积公式及其应用。
教学难点:
圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图
教学过程:
一、以新引旧、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。
5、转化后的图形与原来的图形面积相等吗?
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容
《圆的面积》教学设计5
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的.价值。 教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
一、回顾旧知,引出新知
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法
二、创设情境,提出问题
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)
三、探究思考,解决问题
1、让学生估计圆的面积大小
(1)与同桌说一说你是怎么估的
(2)汇报,
(3)老师引导有没有更好的方法
2、探索圆面积公式
(1)学生操作
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
四:实践应用
《圆的面积》教学反思
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会
在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?
《圆的面积》教学设计6
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
利用圆面积计算公式正确计算圆的面积。
教学难点:
圆面积计算公式的推导。
教具准备:
等分圆教具。
学具准备:
分成十六等分的圆形纸片。
教学过程:
一.谈话导入新课
同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。
二.游戏激趣,理解圆的面积的概念。
师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?
生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。
师:现在大家知道男生为什么涂得慢呢?
生:男同学涂的面积大。
三.探究合作,推导圆的面积公式
1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?
生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的'方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?
2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。
3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。
四.巩固新知,实践运用
1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。
2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?
五.总结
1、这节课你们有什么收获?
2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。
《圆的面积》教学设计7
学情分析:
《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。在学习圆的面积之前,学生已经掌握其他平面图形的计算方法。这节课的目的就是让学生从平行四边形、长方形的面积计算方法和圆的面积的关系,总结出圆面积计算方法。此时这个阶段的小学生的认知特点是复杂的。竞争意识增强,敬佩优秀同学;接触自然、了解社会;加强预习,学会总结。认知也有所发展,在注意力方面,学生的有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都较低年级学生有不同程度的发展。在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,但具体形象记忆的作用仍非常明显。在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维活动仍然具有很大成分的具体形象色彩。在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。初入六年级的小学生是小学学习的最高、最后阶段。随着对小学教育的不断适应,这一时期的学生无论是在生理,还是心理上都比初入学时的儿童稳定,并在此基础上不断发展。刚入六年级的小学生的心理健康教育和学习目标归纳起来为:增强学习技能训练,培养良好的智力品质;引导学生树立学习苦乐观,激发学习的兴趣、求知欲望和勤奋学习的精神;培养正确的竞争意识;鼓励参与社会实践活动,提高做事情的坚持性;建立进取的人生态度,促进自我意识发展。
教学目标:
1.了解圆的面积的含义,经历圆面积计算公式的推导过程【转换思想】,掌握圆面积的计算公式
2.理解圆的面积的意义,掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养观察,操作,分析,概括的能力以及逻辑思维能力。
3.培养认真观察,深入思考的良好思维品质,锻炼自己面对困难勇于克服,锲而不舍的精神。
教学重难点:
1,能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单的实际的问题
2,圆面积的计算以及公式的推导
案例描述:
一、带入情境,引出问题
1,出示课本中的草坪喷水插图,并提出问题,你能从中发现什么数学知识
2,并进一步提出这个圆的面积是指这个图形的哪个部分
3,最后开题~~~今天这节课我们就来学习圆的面积{板书;圆的面积}
二、引入数学历史,增强学生浓厚的学习兴趣
圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的'就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
三、引入旧课,导入新课
【引入】小学生们,前面我们学习过了正方形,长方形,甚至梯形面积等平面图形的面积的计算方法,那我们是不是可以通过动手把圆先切割再拼接成一个我们学过的图形。那么圆的面积不就是我们之前学过的图形的面积嘛。那我们准备工具看一下怎么样才能将圆拼接成一个我们所了解的图形。
1,课件展示:请看大屏幕,分成16份的圆,把它们可以拼接近似成平行四边形,分成32等份,也可以拼成近似为平行四边形,而64等份呢,竟然可以近似为长方形,那你可以发现什么?【分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形】
2,思考提问并总结圆面积计算公式的语言描述
长方形的长相当于圆周长的一半,而长方形的宽相当于圆的半径
3,提出圆面积的计算公式的问题,提问总结s=πr2
4,利用公式,导入数学历史的有关文化,丰富学生的学习过程!!!!!!
会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。
四,熟记公式,并投入实践应用之中
1,口答,根据半径计算出圆的面积
R=1,R=2,R=3
2,练一练
r=8,s=;c=31,4,s=
r=4,s=;d=16,s=
3,那现在请大家回到本节课开始的时候,用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田
4,第18页第2题
让学生独立解答,集体修正的时候要求学生说出每一步计算过程和依据
5,第18页第2题
让学生理解题意之后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是一米的圆,让学生看看,并试着站一站
6,课下思考
用一根长3米的绳子,把一只羊拴在树杆上,羊的活动范围是多少?
五,学生自我评价
【小结】通过本节课的学习,你有什么收获和感悟?
本节课,让我们通过计算,分析结果,总结圆面积的计算公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
六,【作业】随堂练习课后作业
《圆的面积》教学设计8
设计说明
本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:
1.注重联系生活实际,开展探究性的数学活动。
学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。
2.在教学中渗透数学思想,完成新知构建。
在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。
课前准备
教师准备 PPT课件 圆的`面积演示教具 大小不同的两张圆形纸片
学生准备 剪刀 小正方形透明塑料片 圆形学具
教学过程
⊙复习铺垫,导入新课
1.回忆圆的周长的计算方法。
(1)已知直径怎样求圆的周长?
(2)已知半径怎样求半圆的周长?
2.建立圆的面积的概念。
(1)感知圆的面积的大小。
师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?
师明确:圆的面积有大有小。
师:谁能说一说什么叫做圆的面积呢?
师指出:圆所占平面的大小叫做圆的面积。
(2)区别圆的面积和周长。
指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?
学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。
设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。
⊙动手操作,探究新知
1.通过度量,猜想圆的面积的大小。
用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。
师:由此看出,要求圆的精确面积是无法通过度量得出的。
2.回忆多边形面积公式的推导过程。
想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?
(课件演示平行四边形的面积推导过程)
过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?
3.动手操作。
(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。
课件演示剪拼的过程:
(2)讨论:
①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)
②圆和近似的长方形有什么关系?(形状变了,但面积相等)
③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)
④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?
(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)
(3)观察、汇报拼成的长方形与圆的关系。
①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)
圆的半径=长方形的宽
圆的周长的一半=长方形的长
②拼成的长方形的面积与圆的面积有什么关系?
(引导学生理解:形状不同,面积相等)
(4)推导圆的面积计算公式。(引导学生结合图形理解)
因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
《圆的面积》教学设计9
教学内容:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
教学目标:
知识与技能:
让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
推导圆的面积计算公式并能正确地应用圆面积的`计算公式进行圆面积的计算。
教学难点:
引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
教具准备:
多媒体课件,圆片等。
教学方法:
自主探究法
教学过程:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:
①你们想通过什么方法来推导圆的面积计算公式?
②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
《圆的面积》教学设计10
课题:
“圆的面积”教学设计
教学内容:
义务教育课程标准实验教科书六年级上册第五单元“圆的面积”。
教学内容分析:
当前,“数学新课程实施应以学生数学素质的养成为核心目标,课堂教学中学经验的获得是学生数学素质养成的必要条件”已经成为大家的共识。《标准(20xx版)》的作者出:数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中透步积累的。“圆的面积”公式推导,从解决实际问题出发,引导学生用转化的方法把圆转化为长方形来计算面积。这样的过程,能够让学生深刻地体验到“化曲为直”的转化思想和“无限逼近”的极限思想。例3更是提供了一次探索问题解决方法的机会,使学生进一步提高解决问题能力。
圆的面积研究,以计算圆形草坪的面积作为情境自然引入;光盘、环岛、古建筑中的“外方内圆” “外圆内方”、土楼的占地面积、篮球场的三分线大量的生活素材,能有效激发学生的学习热情,促使学生积极主动地去探索知识。同时,通过对这些实际问题的解决,学生也能更真切地体会数学知识的广泛应用。
教学对象分析:
该节课内容是专门针对正迈入小学六年级的学生来展开的,从我多年的教学经验中可以了解到,处于该阶段的很多学生对新知识的接受程度较高,因此我认为这节课对他们来说教学难度不是很大,如果在课堂上能够紧跟着老师的教学思路一起探索、一起学习,定能有所收获。
1、学生的知识基础
该教学内容是学会计算圆的面积。在此基础上,该年级段的学生已经学习了如何辨别圆形、计算圆的周长,指导圆的半径、直径怎么表示,也明白“π”的含义以及其数值。小学六年级是小学阶段最后一年,也是他们在小学校园呆的最后一年,相比于其他低年级的小学生们,他们不仅在年龄上有所增长,而且在知识掌握程度方面也较全面,同时也更加地深入。
2、对学习该内容的困惑与迷思
学生会对“π”的来源以及它的数值具体含义了解不是很清楚,还有存在对“圆”面积公式的疑惑,它是怎样从长方形的角度推向圆的形状的。部分学生存在逻辑感不强,对推导的过程不能做到知根知底,举一反三能力较差。
教学目标:
本节课程的教学设计主要分为以下三个方面:即教学的认知目标、教学方法目标以及教学过程中的情感目标。
1、教学的认知目标
让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、教学方法目标
让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、情感目标
让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重点难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的理解。
教学准备:
PPT课件、圆规、教学模具、纸张、作业本、尺子、剪刀
教学的基本思路(或流程)
教学过程:
一、从旧知到新知,引入新课
根据人教版数学教材中的实例,开展新课堂。
1、课前回忆圆周长的计算公式
(1)在一道题目中,已经知道圆的半径r的数值,怎样计算圆的周长C?
(2)在一道题目中,已经知道半圆的直径R或者四分之一圆的半径r,应该怎样计算这些圆的周长C?
2、明确圆的面积的相关定义:
学习过程1:老师可以拿出课前准备的纸张,用圆规在纸面上画2个大小不一的平面圆,并拿出剪刀进行相应的裁剪。老师:这是两个一样的圆吗?他们一样大吗?
学生:不一样大,一个大、一个小。
老师:你们是怎么判断的呢?
学生A:用眼睛看,它们明显不一样大小。
学生B:把它们重叠在一起比较,哪个大就说明哪个是大圆,哪个是小圆。
老师:在生活中我们凭借着肉眼来辨别这些东西的大小,那么在数学上我们是怎样判别他们的呢?这时我们伟大的数学家们就引入了一个“圆的面积”的概念,通过计算他们的面积大小来确定其大小。
学习过程2:理清“圆的周长”和“圆的面积”之间的区别
老师要用标准的圆形教具,动手指出圆周长和圆面积之间的区别。理清之后,归纳两者之间定义的不同,即圆的周长是指构成圆一周的密闭曲线的长度,而圆的.面积是指某个圆占平面的大小。
二、巧用游戏化形式,辅助学生理解
学习过程1:老师使用PPT课件展示问题:一个4厘米的正方形和一个半径r为4厘米的圆形,怎么比较它们的面积大小。鼓励同学们发挥自身的想象力,对圆面积的大小进行猜想,在讨论后,老师展示结果。在此过程中(老师所呈现的PPT有猜想过程)得出,该圆面积比4个同边长的正方形比较要小,而比3个同边长的正方形要大。老师:可见,圆的面积的大小无法直接用正方形来衡量计算。
学习过程2:老师带领学生们回忆其他几何平面图形面积(如:三角形、平行四边形、长方形等)的计算方法。老师同步PPT的内容,唤起学生们的记忆,即我们在计算一个新的平面几何图形的时候,往往会采取分割、拼接、补全等方法将其转化为熟悉的图形,开展运算,也就是化难为易。
三、教师引领,带领学生一起推导圆面积公式
学习过程1:探索拼接成的长方形和圆之间的关系。
首先,老师提出问题:拼接而成的长方形和圆之间的什么联系呢?鼓励同学们开动自己的脑筋,进行思考。思考完毕,可以邀请几位同学进行回答,最后老师进行总结(展示PPT相关内容)
圆的半径≈长方形的宽
学习过程2:寻求其他推导方法
开展小组讨论(4人为一学习小组):运用转化思想,来求圆的面积。讨论完毕后,小组成员可以派代表进行讲解,此过程有利于提高学生之间的合作和表达能力。
四、实战练习,提高解题效率
自主完成课后习题,明天上课前小组组长要汇报作业情况。同时也不布置一些作业,如下:
计算下列圆的面积和周长(1)已知某圆r=3cm,求S和C(2)已知r=5cm,求S和C
《圆的面积》教学设计11
教学内容:
新人教版数学六年级上册第67—68页,圆的面积。
教学目标:
1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。
2、经历圆的面积计算公式的推导过程,体会转化的思想方法。
3、培养认真观察的习惯和自主探究、合作交流的能力。
教学重难点:
1、运用圆的面积计算公式解决实际问题。
2、理解圆的面积计算公式的推导过程。
教学准备:多媒体课件
教学方法:自主探究,合作交流
教学过程:
一、小测验:
1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。
2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。
二、问题引入
1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?
2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)
3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)
三、探索新知
(一)复习,平面图形面积的计算方法。
(二)探索圆面积的计算方法
1、我们一起来推导圆的面积公式吧!
2、利用多媒体课件展示圆的面积公式的推导过程。
(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。
(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。
3、在图形的拼凑与转化中,同时观察与思考以下问题。
a、拼凑中,圆在转化成什么图形?
b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?
4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)
因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)
如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2
5、学生齐读公式
S= πr2
教师强调r2= r × r(表示2个r相乘)
(三)应用公式
一个圆的半径是4厘米。它的面积是多少平方厘米?
思考:
1、本题已知什么,要求什么?已知圆的半径,求圆的面积。
2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,
3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。
例
1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?
2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。
3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。
4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的.面积。
(四)知识应用
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。
课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。
2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。
3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。
四、课堂总结:这节课,你有哪些收获?
说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。
五、作业布置:
教材第71页,练习十五,第1题~第4题。
《圆的面积》教学设计12
教学内容分析:
圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。
学生情况分析:
小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。
教学目标:
1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的理解。
教学准备:
教具:多媒体课件、面积转化教具。
学具:书、计算器、16等份教具、作业纸。
教学过程:
一、创设情境、揭示课题
1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?
(复习圆的相关特征)
师:那马最多能吃多大面积的草呢?
师:圆所围成的平面的大小就叫做圆的面积。
师:今天我们继续来研究圆的面积。(揭示课题)
2、师:你想研究它的哪些问题呢?(引导学生提出疑问)
【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、猜想验证、初步感知
1、实验验证
(1)师:猜一猜,圆的面积可能会和它的什么有关系?
师:你觉得圆的面积大约是正方形的几倍?
(2)师:对我们的估计需要进行?
生:验证。
师:用什么方法验证呢?
师:下面请大家先数数圆的面积是多少。
师:数起来感觉怎么样?有没有更简洁一点的方法?
(引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)
(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)
圆的半径
(cm)
圆的面积
(cm2)
圆的面积
(cm2)
正方形的面积
(cm2)
圆的面积大约是正方形面积的几倍
(精确到十分位)
(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)
(学生完成后交流汇报。)
师:仔细观察表中的数据,你有什么发现?
生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。
3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?
生:圆的面积是它半径平方的'3倍多一些。
小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。
【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】
三、实验操作、推导公式
1、感受转化,渗透方法
(课件再次出示马吃草图)
师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?
(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)
2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?
(学生回忆后汇报,教师演示,激活转化思路)
3、第一轮探究——明确思路,体会转化
师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?
生:剪圆。
师:怎么剪呢?沿着什么剪?
生:沿着直径或半径剪开。
(分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)
4、第二轮探究——明确方法,体验极限
师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?
生:想把圆形转化成平行四边形。
师:那还能更像吗?
生:可以将圆片平均分成16份。
(引导学生把16、32等份的圆拼成近似的长方形,上台展示)
师:从哪儿可以看出这两幅图更接平行四边形了?
生:边更直了。
师:是什么方法使得边越来越直了?
生:平均分的份数越来越多。
(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)
师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。
【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】
(2)师:我们把圆转化成了长方形,什么变了,什么没变?
生:形状变了,面积大小没有变。
师:这样就把圆的面积转化成了?
生:长方形的面积。
师:要求圆的面积,只要求出?
生:长方形的面积。
5、第3轮探究——深化思维,推导公式
师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。
(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)
师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)
(通过长方形面积计算方法,引出圆的面积计算方法)
师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?
生:π倍。
师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。
生:半径。
5、做“练一练”
完成作业纸第3题,交流反馈。
6、(课件再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】
四、解决问题、拓展应用
1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(课件出示例9)
分析题意后学生独立完成书本第105页例9。
(组织交流,评价反馈)
2、完成作业纸第4题
师:接着看,默读题目,完成作业纸第3题。
(学生独立完成,交流反馈)
五、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】
板书设计:
圆的面积
转化
新的图形学过的图形
演示图
长方形的面积=长×宽
圆的面积=圆周长的一半 × 半径
S=πr×r
=πr2
(1)3.14×22(2)8÷2=4(cm)
=3.14×43.14×42
=12.56(cm2)=3.14×16
=50.24(cm2)
《圆的面积》教学设计13
教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。 教学目标:
知识目标:理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。
能力目标:培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。
情感目标:通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:掌握并理解圆面积的计算公式。
教学难点:引导学生用多种方法推导概括圆面积公式。
教学准备:圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。
教学过程:
一、创设情境,引出问题
课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)
二、回顾旧知,孕优新知
在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)
以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。
三、研究新知,加深理解
1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)
出示自学提纲:
(1)什么叫圆的面积?
(2)书上是怎样推导圆面积的?
(3)为什么是近似的平行四边形?
2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。
出示小组合作学习提纲:(指生读)
(1)你摆的是什么图形?
(2)你摆的图形的面积与圆的面积有什么关系?
(3)所摆图形的各部分相当于圆的什么?
(4)你是如何推导出圆的面积的?圆的面积公式是什么?
(5)你能不能转化成其它图形推导圆面积公式?
(你想把圆转化成什么图形)
3、哪个小组愿意把你们的研究成果给大家展示一下?
请大家关注同学们的发言,从中你一定会受到启发或发现问题。
小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)
4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)
如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?
好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)
(2)如果给出直径你会算吗?出示例1。(指生读题)
四、巩固深化,实际应用
(1)不错,那老师要看看谁的反映最灵活计算能力最强(口答:给半径、直径求面积)。
(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)
(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?
(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?
五、发散思维,拓展知识
小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?
六、总结反思,课外延伸
好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?
圆面积教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的'探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的
自主探究创造条件。
1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实
《圆的面积》教学设计14
【教学内容】:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
【教学目标】:
知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
【教具准备】:
多媒体课件,圆片等。
【教学方法】:自主探究法
【教学过程】:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的`面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
3、圆的面积计算公式的推导。
小组合作讨论以下问题:
a、拼成的近似长方形的面积和圆的面积有什么关系?
b、长方形的长与圆的周长有什么关系?
c、长方形的宽与圆的半径有什么关系?
d、你能找出圆的面积计算方法吗?
长方形的面积=长×宽,
所以圆的面积=()×()=()
学生在小组内积极讨论,探究、分析,并将结果汇报。
长方形的长是圆周长的一半,长方形的宽是半径(r)
因为长方形的面积=长×宽
所以圆的面积=∏r×r=r2
齐读公式S=∏r2强调r2=r×r(表示2个r相乘)
同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.
三、巩固运用、形成技能
1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?
2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?
(1)课件出示例1
(2)学生独立审题
(3)教师板演解答过程.
3、求下面圆的面积r=3md=5cm
①学生独立完成
②集体核对时,强调要先算平方再算乘法。
4、判断题(课件出示)
5、拓展练习:机动题
小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??
四、课堂总结、深化认知:这节课,你有哪些收获?
五、作业:练习十六2.4题.
附:板书
圆的面积
长方形面积=长×宽
↓↓↓
圆的面积=圆周长的一半×半径
=∏r×r
=∏r2
例1:r:20÷2=10(m)
S:3.14×102=314(m2)
答:它的面积是314m2。
《圆的面积》教学设计15
教学内容:
国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。
教学重点:
探索圆面积的计算
教学难点:
理解面积的意义,推导圆的面积计算公式
教学过程
一、导入新课。
(一)关于圆你已经知道了什么?你还想知道什么?
(二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)
(三)你觉得圆的面积可能和什么有关?
(四)出示下图
(五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2
和3r2的)关系。
(六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?
小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。
二、探索圆积的计算公式
(一)让学生试着将圆剪拼成长方形。
(二)阅读课本P104页
(三)让学生再操作
(四)课件演示
(五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
(六)引导观察讨论:这个拼成的长方形和圆有什么关系?
(七)汇报讨论结果。
这个用圆分割成的小块拼成的长方形,宽就是圆的`半径r,长就是圆的周长的一半,也就是2πr÷2=πr。
因为长方形面积=长×宽
所以圆的面积=πr×r=πr2
用S表示圆的面积,那么圆的面积计算公式就是:
S=πr2
(八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)
(九)教学例9
1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?
2、让学生尝试解答。
3、集体评议
4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)
三、知识运用
(一)求出下列各个图形的面积。(P105页的练一练)
(二)根据下面所给的条件,求圆的面积。
1)半径2分米2)直径10厘米3)周长12.56
(生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)
四、本课小结。
通过本课的学习你有什么收获?有什么体会?
【《圆的面积》教学设计】相关文章:
圆的面积教学设计06-02
《圆的面积》教学设计02-07
圆的面积教学设计14篇02-27
圆的面积教学设计(13篇)03-05
圆的面积教学设计13篇03-03
圆的面积教学设计(14篇)03-03
《圆的面积》教学设计13篇03-06
圆的面积教学设计15篇04-04
圆的面积教学设计(15篇)04-05