《圆锥的体积》教学设计

时间:2023-03-07 12:30:36 设计 我要投稿

《圆锥的体积》教学设计(15篇)

  作为一名辛苦耕耘的教育工作者,总归要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。那么应当如何写教学设计呢?以下是小编整理的《圆锥的体积》教学设计,仅供参考,希望能够帮助到大家。

《圆锥的体积》教学设计(15篇)

《圆锥的体积》教学设计1

  教学内容:人教版九年义务教育小学数学教科书第十二册。

  整体感知:这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。

  教学目的:

  1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。

  2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。

  3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。

  [点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想——————验证”、“合作——————探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。

  教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。

  教学过程:

  一、 创设情境导入新课。

  1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?

  2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)

  3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。

  [点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。]

  二、经历体验,探究新知

  (一)渗透转化,帮助猜想

  1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。

  2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的'发现进行汇报。

  3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想……

  [点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗透“转化”的思想。使学生感受到新知也可通过“转化”的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比较、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关。同时运用学生已有的知识和经验让学生进行猜想它们之间有怎样的关系,发展了学生的想象空间,培养了学生的创新思维。]

  (二)小组合作,实验验证。

  1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。

  2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。

  3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:

  概括板书:

  等底到高

  V圆柱=Sh V圆锥= 1/3sh

  4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:

  V =1/3πr2h V =1/3(c/2π)2h V =1/3(d/2)2h

  5、教师组织学生独立完成书中例题后集体订正。

  [点评:俗话说:“实践是检验真理的唯一标准。”学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜想——————验证”这一完整的学习数学的方法。从而也培养了学生合作的意识、发展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。]

  (三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。

  [点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。”学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。]

  三、巩固新知,拓展应用。

  1、判断并说明理由

  (1)圆柱体积是圆锥体积的3倍( )

  (2)一个圆锥的高不变,底面积越大,体积越大。( )

  (3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。( )

  组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。

  2、求下列圆锥的体积(口答,只列式,不计算)

  s=4平方米,h=2平方米

  r=2分米,h=3分米

  d=6厘米,h=5厘米

  组织学生根据圆锥体积公式解答。

  3、实践与应用:

  学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?

  组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。

  [点评:练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的]

  四、课后总结,感情升华。

  这节课你有什么收获?你是怎样获得的?

  [不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续发展。]

  [总评:

  1、钻研教材,创造性地使用教材。

  教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。

  2、注重数学思想方法的渗透。

  数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。

  3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。

  本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展

《圆锥的体积》教学设计2

  基本信息

  课题圆锥的体积

  作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学

  教材分析

  《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

  学情分析

  六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

  教学目标

  1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

  2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

  3、体会数学与生活的密切联系,感受探究成功的快乐。

  教学重点和难点

  重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

  难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

  教学过程

  教学环节

  教师活动 预设学生行为 设计意图

  一、复习准备

  1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

  2、圆锥有什么特点?(同时出示幻灯)

  3、在这个圆锥体中,几号线段是圆锥体的高。

  4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

  2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

  3.学生手势出示

  4.想

  复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

  二、创设情境

  出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)

  引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

  三、学习新课

  1、猜想体积大小

  实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

  圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

  2、理解等底等高

  我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

  底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础

  3、猜想关系、实验验证

  同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

  谁来汇报一下,你们组是怎样做实验的?

  你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

  学生汇报

  用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的.关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

  4、总结公式

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  V锥=V柱×1/3=sh×1/3

  “sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

  5、全面验证

  是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

  (课件演示)等底不等高、等高不等底

  为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)

  在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

  6、圆锥体积公式的实际应用

  (1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

  (2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)

  (3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

  (4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

《圆锥的体积》教学设计3

  设计意图:

  本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

  我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。

  教学目标:

  1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。

  2、会应用公式计算圆锥的体积并解决一些实际问题。

  3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。

  教学重点:

  使学生初步掌握圆锥体积的计算方法并解决一些实际问题

  教学难点:

  圆锥体积计算方法和推导过程。

  教学过程:

  一、复习铺垫:

  1、揭示课题:今天我们一起来探究如何计算圆锥的体积。

  2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?

  二、实验操作:

  1、请看接下来的2个实验:

  2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。

  3、播放视频:

  实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。

  实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。

  4、通过实验你们发现了什么?

  三、公式推导:

  1、通过两次的实验我们可以得出结论:

  圆柱的.体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。

  2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。

  3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。

  4、在应用圆锥体积公式时不要忘记乘!

  四、知识应用

  1、接下来我们应用公式解决实际问题。

  题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1。2m。这堆沙子大约有多少立方米?(得数保留两位小数)

  2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。

  3、列式解答。(分步与综合)

  五、知识小结:

  今天我们学习了圆锥的体积计算:V= Sh= πr2h。

  在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!

  六、结束。

  【课堂教学设想】

  1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。

  2、课堂上组织学生分小组实验:

  圆柱与圆锥等底不等高时,实验结果会怎样?

  圆柱与圆锥等高不等底时,实验结果会怎样?

  “圆锥的体积是圆柱体积的”这一关系存在的条件是什么?

  圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?

  3、课堂检测,促进知识内化。

  【教学反思】

  本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。

  课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。

  课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。

《圆锥的体积》教学设计4

  教学过程:

  一、情境引入:

  (1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

  (2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

  (3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

  (4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)

  (5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)

  设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

  二、新课探究

  (一)、探究圆锥体积的计算公式。

  1、大胆猜测:

  (1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)

  (3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)

  (4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”

  (5)学生用上面的方法验证自己做的`圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)

  2、试验探究圆锥和圆柱体积之间的关系

  我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

  (1)课件出示试验记录单:

  a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

  b、通过实验,你发现了什么?

  (2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

  (3)汇报交流:

  你们的试验结果都一样吗?这个试验说明了什么?

  (4)老师用等底等高的圆柱圆锥装红色水演示。

  先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?

  (教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)

  (6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)

  (这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

  3、公式推导

  (1)你能把上面的试验结果用式子表示吗?(学生尝试)

  (2)老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  (3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

  (二)圆锥的体积计算公式的应用

  1、已知圆锥的底面积和高,求圆锥的体积。

  (1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

  (2)提问:已知圆锥的底面积和高应该怎样计算?

  (3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

  2、已知圆锥的底面半径和高,求圆锥的体积。

  (1)出示例题:

  底面半径是3平方厘米,高12厘米的圆锥的体积。

  (2)学生尝试解答

  (3)提问:已知圆锥的底面半径和高,可以直接利用公式

  v=1/3兀r2h来求圆锥的体积。

  3、已知圆锥的底面直径和高,求圆锥的体积。

  (1)出示例3:

  工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  (5)提问

  4、已知圆锥的底面直径和高,可以直接利用公式。

  v=1/3兀(d/2)2h来求圆锥的体积。

  设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

《圆锥的体积》教学设计5

  教学目的与要求:

  (1)掌握锥体的等积定值,锥体的体积公式。

  (2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。

  教学重点与难点:

  公式的推导过程,即"割补法"求体积。

  教学方法:

  发现式教学 教具:

  三棱柱模型、多媒体

  1、复习祖暅 原理及柱体的体积公式。

  2、等底面积等高的任意两个锥体的体积。

  (类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的关系。

  取任意两个锥体,设它们的底面积都是S,高都是h。

  (创造祖暅 原理的条件)把这两个锥体放在同一个平面α上。这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:

  ∵S1/S=h12/h2,,S2/S=h12/h2,

  ∴S1/S=S2/S,S1=S2。

  根据祖日恒 原理,这两个锥体的体积相等,由此得到下面的定理:

  定理,等底面积等高的两个锥体的体积相等。

  3、三棱锥的体积公式

  为研究三棱锥的体积,可类比于初中三角形面积的求法。

  在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的.平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)

  而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。

  能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?

  [可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。

  也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?

  (图形没有打印)

  [引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。

  三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。三棱锥2、3的底ΔB'CB'、ΔC'B'C的面积相等,高也相等。(顶点都是A')。

  ∴V1=V2=V3=1/3V三棱柱 ∵V棱柱=Sh ∴V三棱柱=1/3Sh

  最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。

  定理:如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:V锥体=1/3Sh。

  推论:如果圆锥的底面半径是r,高是h,那么它的体积是: V圆锥=1/3πr2h

  4、锥体体积公式的应用。

  练习1:正四棱锥底面积是S,侧面积为Q,则其体积为: 。

  练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。

  练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。

  5、课堂小结:1°割补法求三棱锥的思想。

  2°锥体的体积公式。

《圆锥的体积》教学设计6

  教学内容:

  第25-26页,例2及练习四的第3、4题。

  教学目标:

  1、通过分小组倒沙的实验,使学生自主探索圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  1、理解圆锥体积公式的推导过程;

  2、掌握圆锥体积计算方法并能运用解决简单的实际问题。

  教学准备:

  1、学生预习教材;

  2、教师准备等底等高的圆柱和圆锥形容器若干个,沙土,直尺,平板。

  教学过程:

  一、复习

  1、圆柱的体积公式是什么?(学生交流后做幻灯片中的练习题)

  2、说一说圆锥有哪些特征。

  a、出示实物图,学生说一说生活中的圆锥形物体

  b、总结圆锥的特征,学生齐读。

  二、导入新课

  1、幻灯出示一圆锥形沙堆

  2、师:操场上,同学们要计算这堆沙子的体积,怎么计算呢?

  引出课题:这就是这节课我们要探索的`问题

  3、板书课题

  三、探索新知

  1、学习圆锥体积的推导公式

  (1)思考:圆柱的体积公式是怎样推导出来的?(学生交流讨论,教师及时鼓励学生回答)

  (2)师:我们能不能也通过已学过图形来求圆锥的体积呢?

  学生小组讨论交流

  (3)师:有的同学提出了做实验的方法,那么需要哪些器材呢?

  学生交流后,幻灯出示实验器材

  (4)师:用这些器材怎样做实验呢?

  学生小组讨论后,教师:下面,我们就来试一试这种方法

  (5)学生做实验

  A、观察自己手中的圆柱与圆锥,讨论他们的共同点。(等底等高)

  师:下面的时间,请同学们按照实验报告单的步骤做实验,并将结果填入实验报告单中。(教师巡视指导)

  B、集体交流实验结论,大屏幕演示结果

  C、想一想:通过实验你发现了什么?

  要求一个圆锥的体积,必须具备哪两个条件?

  明确:求圆锥的体积,圆锥的底面积和高是必备的直接条件。

  (6)练习

  2、拓展内容

  (1)有些情况下,题目中并不直接告诉圆锥的底面积和高,如果遇到下列情况,我们该如何求圆锥的体积呢?

  (2)学生分小组讨论,填写表格。(教师巡视指导)

  (3)集体交流,大屏幕展示结果

  (4)练习:

  3、巩固练习

  三、拓展知识

  1、出示几组不同的情况,指定每组完成一项

  2、展示结果

  3、练习

  四、小结

  师:同学们,今天这节课你都学会了什么?

  学生交流回答,教师板书

  五、作业设计

  六、板书设计

  圆锥的体积

  等底等高的圆锥和圆柱,

  圆锥的体积是圆柱体积的

《圆锥的体积》教学设计7

  指导思想与理论依据:

  本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

  教学背景分析:

  (一)教学内容分析:

  1、教材内容:

  本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  2、研读完教材后,自己的几个问题:

  (1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?

  (2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

  (3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?

  (4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?

  3、自己的创新认识:

  首先,研读教材后,我认为这几个问题的根本是一致的`都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

  其次,是要提供给同学们一个可操作的空间。

  (二)学情分析:

  1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

  2、自己的认识:(结合自己在讲课时发现的问题而谈)

  学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。

  (三)教学方式与教学手段分析:

  根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。

  (四)技术准备与教学媒体:

  在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。

  教学目标设计:

  (一)教学目标:

  1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

  3、培养学生的观察、分析的综合能力。

  (二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积

  (三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

《圆锥的体积》教学设计8

  教学目标:

  1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

  2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

  3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

  教学重点:通过实验的方法,得到计算圆锥的体积。

  教学难点:运用圆锥的体积公式进行正确地计算。

  教学准备:等底等高的圆柱和圆锥容器模型各一个。

  教学过程:

  一、复习导入

  师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

  1、圆柱体积的计算公式是什么?(指名学生回答)

  2、圆锥有什么特征?

  同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)

  二、探究新知

  课件出示等底等高的圆柱和圆锥

  1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

  学生回答:它们是等底等高的。

  猜想:

  (1)、你认为圆锥体积的大小与它的什么有关?

  (2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

  2、学生动手操作实验

  (1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

  (2)、通过实验,你发现了什么?

  小结:通过实验我们发现圆柱的.体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

  3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积=1/3×圆柱体积)

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积=1/3×底面积×高)

  师:用字母应该怎样表示?(V=1/3sh)

  师:在这个公式里你觉得哪里最应该注意?

  三、教学试一试

  一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

  四、巩固练习

  1、计算圆锥的体积

  2、判一判

  3、算一算

  4、拓展延伸

  五、总结

  通过这节课的学习,你有什么收获呢?

  六、板书:

  圆锥的体积=圆柱的体积×1/3

  圆锥的体积=底面积×高×1/3

  用字母表示V=1/3sh

《圆锥的体积》教学设计9

  1、认知目的:

  (1)让学生认识圆锥,掌握它的特征。

  (2)理解圆锥的体积计算公式的推导,并能灵活运用公式计算圆锥的体积。

  2、能力目的:

  发展学生的空间观念,培养学生观察,动手操作,总结规律的能力。

  3、情感目的:

  创造和谐的师生关系,调动学生的非智力因素,激发学生的学习兴趣。

  教学重点:

  建立圆锥体的表象,概括圆锥体的特征,并能运用公式计算圆锥体的体积。

  教学难点:

  理解等底等高的圆锥体和圆柱体的关系,以及圆锥体积公式的推导过程。

  教学准备:

  1、多媒体计算机软、硬件一套。

  2、学生实验用圆柱、圆锥容器十套,红色溶液一桶。

  3、幻灯机,圆锥体实物如:小丑帽、重锤等。

  教学过程:

  一、复习准备:

  1、圆柱的体积计算公式是什么?

  2、已知一个圆柱的半径是2厘米,高是5厘米,它的体积是多少?

  二、导出新课:

  我们已经学习过了长方体和正方体及圆柱体的体积,在实际生活中,经常会遇到另一种物体(出示圆锥体实物如:小丑帽、重锤),这种形体叫圆锥体。你们在生活中见过这样的物体吗?(请学生回答)这节课我们重点研究圆锥的体积。(板书课题:圆锥的.体积)

  三、新授:

  1、学生通过对圆锥实物及电脑图形的观察,多角度多种实物中得到对圆

  锥感性认识,在建立了感性认识的基础上,师生共同总结出圆锥的特征是:它只有一个底面;这个底面是一个圆;它有一个顶点。

  教师拿出已准备好的圆锥教具,将其一分为二,叫学生观察圆锥的高,指出从顶点到底面圆心的距离叫圆锥的高。

  2、绍各部分的名称(用电脑出示圆锥图形)

  3、圆锥体积公式的推导:

  通过分组实验让学生自己发现圆柱、圆锥在等底等高时的体积关系。在实验前教师提出实验的要求和实验要解决的问题。

  问题:(1)圆锥与圆柱是否等底等高?

  (2)倒了几次才能倒满空圆柱?

  (3)这个实验说明等底等高的圆柱、圆锥体积有怎样的关系?

  要求:(1)分五人一组,相互合作,共同完成实验。

  (2)教师每组给一个中空、未封底的圆锥,学生自己动手制作一个与它等底等高的圆柱。制作的圆柱也不封底。

  (3)将圆锥装满溶液,然后倒入圆柱里,装满圆柱为止。

  实验结束后,让学生自己总结得出结论,教师根据学生得出的结论得出Ⅴ锥=

《圆锥的体积》教学设计10

  教学内容:

  《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。

  教学目标:

  1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。

  2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。

  3、培养学生的合作意识及主动探索知识的精神。

  教学重点:

  让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。

  教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。

  教学准备:

  1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。

  2、教学软件。

  教学流程:

  一、创设情景,激趣引新。

  1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”

  (学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)

  2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。

  〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉

  二、小组合作,探究学习。

  1、动手操作,测量圆锥体的体积。

  要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的.圆锥体的体积。测量物体是容器的厚度不计。

  〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉

  3、分组汇报不同的方法。

  〈学生在汇报时可边讲解边示范〉

  方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。

  方法二:利用手中的一立方厘米的小木块进行估算。

  方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。

  方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh

  〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉

  (1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?

  (2)学生再次在小组内操作探究。

  (3)汇报结论。

  (4)微机演示。

  当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。

  〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉

  4、评价以上各种办法

  同学们的结论是用公式计算比较方便。

  三、解决实际问题

  (问题一)

  1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)

  2、汇报结果。

  先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)

  (问题二)

  1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?

  2、汇报结果。

  用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克

  3、验证计算结果

  用称称一称,比较一下结果。

  4、讨论两次结果为什么不同。

  由于测量时厚度不计,计算时是近似值。都存在误差。

  〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉

  (问题三)

  利用圆锥体积公式计算。

  (1)r=2cm h=6cm v=?(2)d=6m h=5mv=?

  (问题四)

  计算不规则物体体积或容积。(直说出计算的方法即可)

  1、用什么方法计算出葫芦能装多少水?

  2、胡萝卜的体积怎样计算?

  3、不规则的零件体积计算?

  〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉

  四、总结全课

  说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。

《圆锥的体积》教学设计11

  教学目的:使学生初步掌握圆锥体积的计算公式。

  并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

  教学难点:圆锥的体积应用

  学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件

  教学时间:一课时

  教学过程:

  一、复习

  1、圆锥有什么特征?(课件出示)

  使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  学生分组实验。

  汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。

  多指名说

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 ×圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的'体积= 1/3 ×底面积×高

  师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 SH

  师:在这个公式里你觉得哪里最应该注意?

  教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  1/3×19×12=76((立方厘米))

  答:这个零件体积是76立方厘米。

  做一做:课件出示,学生回答后,教师订正。

  1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?

  2、已知圆锥的底面半径r和高h,如何求体积V?

  3、已知圆锥的底面直径d和高h,如何求体积V?

  4、已知圆锥的底面周长C和高h,如何求体积V?

  5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?

  例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  判断:课件出示,学生回答后,教师订正。

  1、圆柱体的体积一定比圆锥体的体积大( )

  2、圆锥的体积等于和它等底等高的圆柱体积的 ( ) 。

  3、正方体、长方体、圆锥体的体积都等于底面积×高。 ( )

  4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米( )

  四、教师小结。

  这节课我们学习了哪些知识?你还有什么问题吗?

  五、作业。课本练习

《圆锥的体积》教学设计12

  一、教学内容

  《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

  二、教材分析

  本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

  三、教学目标

  1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

  2、能运用公式解答有关的实际问题。

  四、教学重难点

  教学重点:圆锥体积的计算公式

  教学难点:圆锥的体积公式推导。

  五、课前准备

  课件

  六、教学过程

  一、谈话引入

  今天,我们来学习圆锥的体积公式是怎样推导出来的?

  二、自主探索,操作实验

  下面,我们一起来做个小实验

  (1)取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。

  (2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

  (3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh

  三、练习填空

  1、圆锥的体积=(),用字母表示是()。

  2、圆柱体积的与和它()的圆锥的体积相等。

  3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

  学生练习,教师总结。

  四、巩固练习:

  求下面各圆锥的体积,只列算式。(单位:厘米)

  观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

  五、运用所学的知识解决实际问题

  一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?

  学生思考,教师讲解:

  先求半径:18、84÷ 3、14 ÷ 2=3(米)

  再求底面积:3、14×3=28、26(平方米)

  求圆锥体积:1/3×28、26×6=56、52(立方米)

  最后求大米的重量:56、52×500=28260(千克)

  六、计算圆锥的体积所必须的条件

  学生思考,教师归纳总结

  计算圆锥的体积所必须的条件可以是:

  底面积和高

  底面半径和高

  底面直径和高

  底面周长和高

  只要知道啦其中的两个条件,就可以求出圆锥的体积。

  微课学习指导

  本微课的教学内容为《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

  微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习巩固的`过程。

  配套学习资料

  圆柱的体积公式

  圆柱的体积公式等于底面积乘高,用字母表示:V=sh

  微课制作技术

  1、使用ppt制作片头。

  2、使用手机摄录视频效果。

  3、使用Camtasia Studio软件和会声会影软件进行后期的混音制作和整合。

  4、使用格式工厂进行最后的格式转换。

  教学需求分析

  适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。

  学习内容分析:《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

  学习目标分析:

  (1)通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

《圆锥的体积》教学设计13

  教材分析

  本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

  本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

  设计理念

  数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

  教学目标

  1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

  2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

  3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

  教学重点:

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  教学难点:

  圆锥体积公式的推导

  学情分析

  学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。

  教法学法:

  试验探究法、小组合作学习法

  教具学具准备:

  多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)

  教学课时

  1课时

  教学流程

  一、回顾旧知识

  1、你能计算哪些规则物体的体积?

  2、你能说出圆锥各部分的名称吗?

  设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。

  二、创设情景、激发激情

  展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?

  设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)

  三、试验探究、合作学习(探讨圆柱与圆锥体积之间的关系)

  探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?

  1、猜想:猜想它们的底、高之间各有什么关系?

  2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果。

  3、小组汇报试验结论,集体评议。(注意汇报出试验步骤和结论)

  4、教师介绍数学专用名词:等底等高。

  设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。

  探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?

  1、大胆猜想:等底等高圆柱与圆锥体积之间的关系

  2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据。(教师巡视指导每组的试验)

  3、小组汇报试验结论。(提醒学生汇报出试验步骤)

  教学预设:

  (1)圆椎的体积是圆柱体积的3倍;

  (2)圆锥的体积是圆柱体积的三分之一;

  (3)当等底等高时,圆柱体积是圆锥体积的'3倍,或圆锥的体积是圆柱体积的三分之一等等。

  4、通过学生汇报的试验结论,分析归纳总结试验结论。

  5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)

  设计意图

  通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。

  探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。

  1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?

  2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?

  3、学生通过观看试验汇报结论。

  4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。

  5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。

  设计意图

  通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。

  四、实践运用、提升技能

  1、判断题:题目内容见多媒体展示独立思考---抽生汇报---说明理由---师生评议。

  2、口答题:题目内容见多媒体展示独立思考---抽生汇报---学生评议。

  3、拓展运用:课本例题3学生分析题意---小组合作解答---学生解答展示---师生评议。

  设计意图通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。

  五、谈谈收获:这节课你学到了什么呢?

  六、课堂作业:

  1、做在书上作业:练习四第4、7题

  2、坐在作业本上作业:练习四第3题

《圆锥的体积》教学设计14

  【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

  (1)底面积是5平方厘米,高是6厘米。

  (2)底面半径4分米,高是10分米。

  (3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的.圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是v=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  (1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

  (2)、求圆锥的体积(看图)

  (3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2、填空。

  (1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

  3、选择

  (1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

  (2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

  四、课堂总结

  师:今天,我们学习了什么内容?怎样计算圆锥的体积?

  对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

  五、布置作业

  课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  【教学重点】

  圆锥的体积计算。

  【教学难点】

  圆锥的体积公式推导。

  【教学关键】

  圆锥的体积是与它等底等高的圆柱体积的三分之一。

  【教具准备】

  多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

  【学具准备】

  空心圆锥和圆柱实物各一个,沙土若干。

《圆锥的体积》教学设计15

  一、教学目标

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  二、教学重、难点

  重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  难点:理解圆锥体积公式的推导过程。

  三、教具学具

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  四、教学流程

  (一)创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面最大的;

  生:我选择高是最高的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的'体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  (二)设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:1、实验材料,任选沙、米、水中的一种。

  2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:1、谁来汇报一下,你们组是怎样做实验的?

  2、通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则v圆锥=sh÷3即v圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  五、联系生活,拓展运用

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

  得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点? v锥=1/3sh

  (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  活动五:整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

【《圆锥的体积》教学设计】相关文章:

圆锥的体积教学设计02-02

《圆锥的体积》教学设计03-07

《圆锥的体积》教学设计15篇03-07

《圆锥的体积》教学设计通用15篇03-07

圆锥的体积评课稿11-05

圆锥的体积的评课稿11-09

圆锥的体积评课稿04-02

《圆锥的体积》评课稿03-11

圆锥的体积教学评课稿(精选5篇)09-25