面积的教学设计

时间:2024-09-22 05:05:37 设计 我要投稿

面积的教学设计

  作为一位不辞辛劳的人民教师,总不可避免地需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么教学设计应该怎么写才合适呢?下面是小编收集整理的面积的教学设计,仅供参考,大家一起来看看吧。

面积的教学设计

面积的教学设计1

  第1课时

  [教学内容]

  组合图形的面积(第75-76页)

  [教学目标]

  1、在自主探索的活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学知识,解决生活中组合图形的实际问题。

  [教学重、难点]

  理解计算组合图形面积的多种方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  [教学过程]

  一、通过动手拼图,认识组合图形的形成及特点。

  让学生用课前准备好的长方形、正方形、平行四边形、三角形与梯形,先说说基本图形的特点。然后,组织学生用这些基本图形拼出各式各样的图案,并进行交流。让学生体会组合图形的组成特点。

  二、探索解决组合图形面积计算的问题

  1、出示计算客厅面积的问题,并让学生说说这个图形的特点。

  2、小组探索

  一般学生会运用分割的方法,将一个图形分割成几个基本的图形。对于分割的方法,需要与学生讨论怎样进行合理的分割,让学生懂得分割图形越简洁,其解题方法也越简单,同时又要考虑分割的图形与所给条件的关系。有些分割后的图形难于找到相关的条件,那么这样的分割就是失败的。

  讨论添补的方法。讨论:为什么要补上一块?补上一块后计算的方法是怎样的?

  三、运用所学知识解决日常生活中的问题。

  练一练:

  >第1题:分三个层次练习,第一层请学生任意分割,只要分割成已学的图形,即达到解题要求。第二层请学生分割为最少的学过的图形,第三层适当添上相关的条件进行分割,要求分割得合理,能计算分割后的面积。通过三个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割。

  第3题:

  此题分两个层次开展练习:第一个层次是油漆教室门的一面,共需要油漆多少面积。第二层次是油漆教室门的两面,共需要多少油漆。

  [板书设计]

  组合图形的面积

  图形1分割法添补法

  第2课时

  [教学内容]

  成长的脚印(第77-78页)

  [教学目标]

  1、能正确估计不规则图形的面积的大小。

  2、能用数格子的方法,计算不规则图形的面积。

  [教学重、难点]

  能正确估计不规则图形的面积的大小。能用数格子的方法,计算不规则图形的面积。

  [教学过程]

  一、不规则图形的面积

  1、创设情境

  2、估计小华不同年龄的两个脚印的面积

  小组讨论,交流估计的方法。

  3、讨论:把图形看作近似的基本图形,并围一围,再量出需要的数据进行计算。

  二、练一练

  第1题:通过练习进一步学习和巩固,估计不规则图形面积的方法。

  第2题:先让学生独立地估计,然后开展交流,最后请同学归纳估计的基本方法。

  三、实践活动

  小组内开展活动,自己选择材料、确定任务、分工合作。

  尝试与猜想

  第3课时

  [教学内容]

  鸡兔同笼问题(第78-79页)

  [教学目标]

  1、通过学生对一些日常生活中的.现象的观察与思考,从中发现一些特殊的规律。

  2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

  [教学重、难点]

  通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

  [教学过程]

  一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

  1、小组活动

  2、交流方法

  3、小结

  二、做一做

  独立完成第1-3题,并交流解决的方法。

  第4题的答案有多种,启发学生找出不同的答案。

  讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

  [板书设计]

  鸡兔同笼问题

  方法1方法2方法3方法4

  第4课时

  [教学内容]

  点阵中的规律(第82-83页)

  [教学目标]

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、帮助学生建立数学模型,从直观的操作中发现一些规律。

  [教学重、难点]

  帮助学生建立数学模型,从直观的操作中发现一些规律。

  [教学过程]

  一、探索与发现

  1、指导学生观察书上提供的图形的基本形状。

  2、指导学生观察前后图形点的个数是如何增加的。

  3、指导学生观察前后的算式。

  4、小结:发现的规律

  二、试一试:

  第一题:先让学生独立思考,然后组织学生进行交流。

  第二题:让学生独立完成,并交流发现的规律。

  第5课时

  [教学内容]

  整理与复习(三)(第84-85页)

  [教学目标]

  1、通过整理复习对所学知识进行归纳总结。

  2、通过整理复习巩固所学知识。

  [教学重、难点]培养总结、归纳能力。

  [教学过程]

  一、整理复习组合图形面积

  主要知识:组合图形面积的计算和不规则图形面积的计算。

  归纳基本的解题思路:举例说明“分割”、“添补”法的适用对象。

  二、整理复习分数加减法

  主要知识:异分母分数的加减与实际应用,分数加减法的混合运算,分数与小数的互化。

  归纳基本的计算方法。

  三、练一练:

  第2题:学生独立完成

  第3-6题

  可以让学生自己画线段图进行分析解答。

面积的教学设计2

  教学目标:

  1、让学生经历探索物体表面和封闭图形大小的实际问题的过程,理解面积的含义。

  2、在观察、比较、拼摆、测量等建立常用面积单位表象的活动中,理解面积的含义。在解决问题的过程中,体会规定统一的面积单位的必要性。

  3、通过自主学习,获得成功体验,感受数学的价值。

  教具、学具准备:

  图形卡纸、用来拼摆的小圆形、小正方形、小长方形、两张大小不一样的长方形白纸。

  一、认识面积。

  1、师:假如老师今天要在班里举行一个涂色比赛,看谁能在相同的时间内最快涂完一张纸?(出示:)你会选择哪一张纸来涂?(小的那张。)

  师:为什么?(因为它小,能很快涂完,容易赢……)你们所说的大小指的是哪啊?(学生会指出是纸的面)

  师:大家都认为这张纸的面大,这张纸的面小,要想很快涂完,应该选择面小的这张纸,是吗?(是)

  2、师:这是这张纸的面,那其它物体的面又在哪里呢?如:数学书的封面、桌子的面,请同学们用手摸一摸。

  师:刚才我们摸的都是物体的表面。数学书的面和桌子的面比较,哪个面大哪个面小?(桌子面大,书的面小)

  师:同学们这种通过观察直接比较出物体表面大小的方法叫观察法。再来比较一下数学书的封面和黑板面哪个大?

  师:通过观察我们知道了物体的表面是有大有小的。

  3、出示4个封闭图形、1个不是封闭图形。

  师:哪个图形和其他图形不一样?

  师:那这些图形都是封闭图形。那么它们又有大小吗?(有)

  师:(板书面积的定义)物体表面或封闭图形的大小,就是它们的面积。

  师:课桌面的大小就是课桌的面积;西瓜表面的大小就是西瓜的面积;你能像老师一样再来说说其他物体的面积吗?(生说)

  二、认识面积单位。

  1、(教师出示3张彩纸,红色、黄色、蓝色)

  师:小组里任选选择其中的两张彩纸,比比谁大谁小,要求:不能改变彩纸的形状。(小组活动)

  (1、选红色和黄色:叠在一起,师可以顺势评价,在数学里叫重叠法。

  2、选黄色和绿色:一眼就可以看出来,用观察法。

  3、选绿色和红色:重叠但还是比不出谁大谁小。)

  师:到底谁大谁小?你来猜猜看。(生随意猜)

  师:红色和黄色比,红色大;黄色和绿色比,绿色大;绿色和红色比,不知道谁大谁小?那怎么办呢?

  2、师:我们用手里的数学学具来帮助比较这两个图形的大小。(生活动并汇报)

  师:有的用,有的用,你更支持哪一种摆法呢?

  师:这些小正方形的面积就是这张纸的面积;这些小○的面积只能说大约是这张纸的面积。

  3、(一个正方形由9个大正方形组成,另一个正方形由16个小正方形组成。)先不出示,让学生猜一猜。

  师:哪个面积大?(生猜,然后出示图片)

  师:为什么9格的'图形比16格的要大?

  师:在比较两个物体表面的面积的时候,必须要用统一的标准。这个统一的标准,就是面积的单位。那常用的面积单位有哪些呢?

  4、师:常用的面积单位有平方厘米、平方分米、平方米。

  师:你想不想知道1平方厘米、1平方分米、1平方米是多大?(先和老师找到1平方厘米的正方形)

  师:用你的尺量一量这个小正方形的边长是多少?(1厘米)

  (板书:边长是1厘米的正方形,面积是1平方厘米)

  师:找找生活中哪些物体表面的面积是1平方厘米。(生找)哪个手指甲的面积最接近1平方厘米?

  师:你想不想知道1平方分米是多大?

  师:边长1分米的正方形,面积是1平方分米。(板书)

  用你的尺量量,验证一下。

  师:你能不能用手比划1平方分米的大小。(生一起比划)

  师:用你手里1平方分米的正方形去测量一下数学书封面的面积是多少?

  师:你觉得1平方米是边长多大的正方形?(1米)

  师:你先比划一下1米有多长。(生比划)小组里的同学合作,伸开双臂比划一下1平方米。

  5、感知1平方米的大小。

  师:那1平方米又是多大呢?(出示1平方米的正方形)

  这就是1平方米的面积,大家猜猜,这里面能放几本数学书呢?来,验证一下。(学生出来放书示范)

  三、巩固认知,应用新知。

  填上合适的面积单位。

  教室该用()作单位。橡皮该用()作单位。

  笔盒该用()作单位。黑板该用()作单位。

  四、课后小结。

  师:这节课你都学到了什么?

  师:把你的收获带回家,找找生活中的1平方厘米、1平方分米、1平方米。

面积的教学设计3

  教学目标:

  1.通过两次剪圆,感知对圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,知道圆心和半径的作用,会用圆规画圆,提高对圆的认识;通过建构,掌握对圆的认识;通过应用,使学校数学向生活数学延伸,升华对圆的认识。

  2.通过欣赏生活中的圆、用圆设计的图案,发现数学美,提高学习的兴趣。

  3.通过介绍圆,培养主动建构的能力;通过学生系列的探索活动,培养学生科学的探究态度,发展学生的空间观念。

  教学重点:

  认识圆,掌握圆的特征。

  教学准备:

  学生:剪刀、彩色纸剪一个平面图形、圆规、直尺、圆形物体一个、一张方格纸

  教师:圆规、直尺、一个圆、一根长绳、课件

  教学设计思路:

  圆在生活中是很常见的,应用也是非常广泛的。通过举例、欣赏、想象基础上的两次剪圆、套圈基础上的探究活动,实现对生活数学的提炼和向学校数学的过渡;通过用圆形物体画圆、用圆规画圆、用绳子画圆,实现生活数学与学校数学的精密结合;通过设计汽车轮胎、测量实物圆的直径、利用圆设计图案,实现学校数学的提升和向生活数学的延伸。

  学生对生活中的圆是认识的,对数学中的圆也是有一定基础的。通过两次剪圆,感知对圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,提高对圆的认识;通过建构,掌握对圆的认识;通过应用,升华对圆的认识。

  教学预设活动:

  一、剪圆,感知对圆的认识

  师:同学们,这节课我们一起来研究圆,板书圆。你见过圆吗?在哪里见过?

  师:放课件,欣赏生活中的.圆。

  师:请你闭上眼睛在脑子里勾画一下圆的形状.

  师:直接剪出你印象中的圆。

  师:剪下来的图形跟你印象中的圆完全一样吗?有什么不同?

  师:怎样才能剪出你印象中的圆呢?在刚才的基础上剪一剪。

  师:通过剪圆,你觉得圆与带来的平面图形的最大区别是什么?

  二、探究,理解对圆的认识

  师:我有一件礼物,谁先抢到就送给谁,你认为现在这种排列合理吗?为什么?怎么排队最合理?我应该站在哪儿?你怎么跑?哪两个人之间的距离最远?

  师:我们把刚才讨论的内容在这个圆中表示出来,分别怎么表示?分别叫什么?

  师:直径真的是最长的吗?怎么验证呢?

  师:请你猜想一下,圆会有哪些特征?根据学生的猜想教师板书。

  师:你能验证这些猜想吗?请你试一试。如果一个人验证有困难可以找人合作。

  师:谁愿意说说你是怎么验证的?有补充吗?在验证过程中有新的发现吗?

  三、画圆,提高对圆的认识

  师:我们知道要剪圆先要画圆,你以前画过圆吗?你是怎么画的?

  师:如果想画一个半径是3厘米的圆,借助什么来画会比较方便?你会画吗?

  师:谁愿意展示你是怎么画圆的?先说再画。有不同的方法吗?

  师:若想改变圆的大小,我们可以怎么做?半径的作用是?

  师:若想改变圆的位置,我们可以怎么做?圆心的作用是?

  师:你还知道其他画圆的方法吗?

  师:我想到操场上画一个很大的圆,你能帮我想个办法吗?谁愿意示范?用这种方法画圆要注意什么?

  四、建构,掌握对圆的认识

  师:同学们,刚才我们对圆进行了研究,现在请你闭上眼睛回忆一下我们学习的过程,整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?

  五、应用,升华对圆的认识

  师:如果你是汽车设计师,会把车轮设计成什么形状?说说你的理由?为什么不设计成其它形状呢?

  师:其实利用圆还可以设计出非常美的图案,欣赏用圆设计的图案。

  师:你能利用圆在方格纸上设计一个漂亮的图案吗?

  六、练习。

面积的教学设计4

  一、引入新课:

  1.引入。

  师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具)

  2.激发兴趣。

  【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮?

  师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?”

  师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知。

  1.什么是“圆柱的表面积”?

  师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论)

  师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积?

  (生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书)

  师:【课件演示这一过程】“你能用一个等式来概括这句话吗?”

  师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积

  也就是说,要求圆柱的表面积,必须知道哪两个条件?

  2。圆柱的侧面积。

  师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积)

  ①合作探究。

  “请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求?

  学生分组探究。

  ②汇报交流。★※★※★

  师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。

  ③.【课件演示变化过程】★师解说。

  (贴出:圆柱的侧面积=底面周长×高 )

  强化:“要求圆柱的侧面积,必须知道什么条件?”

  3.学习例1。【课件出示】

  一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。)

  一人板演,全班齐练。

  板演者讲解题思路。集体订正。

  小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。

  4.计算圆柱的侧面积。

  请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。

  【课件出示】

  5.学习例2。

  师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板?

  ①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面?

  【课件出示例2图】

  ②独立试算:(一个板演,全班齐练。)

  ③指名讲解题思路。

  ④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。

  ⑤扩展:

  a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积?

  【课件出示例2改后的题】

  b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢?

  【课件出示例2改后的题】

  学生口算。

  ★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?”

  【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米?

  d.指名说解题思路。

  三.实际应用。

  【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  ①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?

  ②强调“没盖”,“得数保留整百平方厘米。”

  ③独立计算。

  ④板演者讲解题思路。(讲清每步算的是什么)

  ⑤了解“进一法”。

  ★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的.材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”

  ⑥举一反三

  师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?

  【课件出示】

  ★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。

  四.巩固练习。

  1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。)

  2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米?

  3.回到引入题。

  【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮?

  如果要制作200个呢?制作1000个呢?

  想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么?

  师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗?

  五.实践应用。

  师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。)

  “现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。”

  六.全课小结:

  师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获?

  师:你有没有想提醒同学们注意的地方?

  教学目标:

  1.知识目标:

  ⑴.理解圆柱的侧面积和表面积的含义。

  ⑵.掌握圆柱侧面积和表面积的计算方法。

  ⑶.会正确计算圆柱的侧面积和表面积。

  2.能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备:

  1.教师、学生每人用硬纸做一个圆柱体模型、另备圆柱体实物。

  2.多媒体课件。

面积的教学设计5

  教学内容:

  人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。

  教学目标:

  ①理解并掌握平行四边形的面积计算公式。

  ②会运用公式正确计算平行四边形的面积。

  ③培养操作能力和推理能力,养成积极思考的良好学习习惯。

  教学重点:

  理解并掌握平行四边形的面积计算公式。

  教学难点:

  平行四边形的面积计算公式的推导。

  教具和学具:

  电脑、课件、平行四边形、长方形、剪刀、尺。

  教学过程:

  一、前提测评。

  1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

  2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?

  3、指出平行四边形对边上的高。

  二、认定目标。

  1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]

  2、看到这个课题,大家想学习哪些知识呢?

  三、导学达标。

  (一)、用数方格的方法求平行四边形的面积。

  (1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)

  ⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?

  (3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?

  (二)、推导平行四边形的面积计算公式。

  ⑴、学生实验操作。

  谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。

  在剪、拼前,大家想一想长方形的特征是怎样的?

  a、学生实验操作。

  b、问:你是怎样把平行四边形剪、拼成长方形的?

  c、电脑显示剪拼过程。

  ⑵、讨论拼成的长方形与原平行四边形的关系。

  a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

  ①平行四边形与拼成的长方形的面积有什么关系?

  ②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

  ③长方形的面积公式怎样表示?

  ④平行四边形的面积公式怎样表示?

  b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的'长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)

  c、板书:

  长方形的面积=长×宽

  ‖ ‖ ‖

  平行四边形的面积=底×高

  d、齐读两遍公式

  (三)实际运用。

  1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?

  2、学生运用公式计算方格图中的平行四边形的面积。

  ⑴、学生计算。[板书:6×3=18(平方厘米)]

  ⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。

  3、强调运用公式计算平行四边形面积的条件。

  师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?

  4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。

  ⑴、出示例题,学生默读一遍:

  一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)

  ⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?

  (电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?

  ⑶、学生列式计算,一生板演。

  ⑷、评讲。

  (五)、实际应用训练。

  ①课本p72.2

  ②p73.5

  四、教师总结:你有什么收获?

  五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?

  看谁算得最快?

  六、作业:72页

  评议记录:

  本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。

  本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。

面积的教学设计6

  教学目标:

  1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。

  2、进一步发展学生的空间观念和空间想象能力。

  3、密切数学与生活的联系,提高学生学习数学的学习兴趣。

  教学重、难点:

  能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。

  教学准备:

  多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。

  教学过程:

  一、复习长方体和正方体的特征

  师:长方体有什么特征?

  (长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)

  正方体呢?

  (正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。)

  师最后根据学生的口答小结。

  二、复习长方体和正方体的表面积的计算方法

  1、复习长方体每个面的面积的计算方法。

  提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?

  学生口答,课件及时反馈。

  2、复习长方体和正方体表面积、底面积和侧面积的计算方法。

  课件依次出示长方体和正方体,逐个提问。课件及时反馈。

  3、求长方体和正方体的表面积(只列式不计算)。

  第一个是长方体,6个面都是长方形;

  第二个是长方体,有2个面是正方形,其余4个面是长方形;

  第三个是正方体。

  先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。

  三、复习长方体和正方体表面积的实际应用

  1、长方体和正方体表面积的实际应用的基础练习。

  (1)出示一组物体的图片。

  师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的同学互相说一说。

  (2)计算无盖的长方体玻璃鱼缸的玻璃面积。

  先审题:要求玻璃面积,实际是求长方体哪几个面的面积?

  再口答算式,并计算。

  (3)计算火柴盒内盒和外盒的面积。

  先独立思考,再集体交流。

  根据学生口答板书:

  火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)

  火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)

  (4)选择题

  (1)1、一个通风管的横截面是边长0、2米的正方形,长2、5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?()

  A、0、2×2、5×50

  B、0、2×0、2×2、5×50

  C、0、2×2、5×4×50

  还可以怎样计算?

  展示长方体通风管展开成一个长方形的过程,帮助学生思考。

  还可以列式为:0、2×4×2、5×50

  (2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米?()

  A、20×10+(20×2+10×2)×2

  B、20×10+20×2+10×2

  C、(20×10+20×2+10×2)×2

  (3)一个棱长3分米的正方体,在它的`顶点处切下一个棱长1分米的小正方体,表面积和原来相比()。

  A、减少了

  B、不变

  C、增加了

  (4)一个正方体的棱长之和是24厘米,它的表面积是()平方厘米。

  A、6B、48C、24

  (5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大()倍。

  A、3B、6C、9

  (6)把两个正方体拼成一个长方体,它的表面积减少()面的面积。

  A、1B、2C、3

  2、拓展练习。

  (1)学校大门前有6级台阶,每级台阶长6米,宽0、4米,高0、2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?

  (2)设计包装纸。

  a、把两包抽纸拼在一起有几种拼法?哪种最省包装材料?

  b、把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?

  3、思考题。

  下图表示用棱长1厘米的正方体摆成的物体。(书第18页)

  (1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。

  (2)这个物体的表面积是多少平方厘米?

  (3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?

  四、课堂作业

  1、小区大门前有8级台阶,每级台阶长5米,宽0、4米,高0、2米。

  (1)8级台阶一共占地多少平方米?

  (2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?

  2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。

  (1)粉刷的面积是多少平方米?

  (2)如果每平方米需工料费1、5元,粉刷工料费共需多少元?

面积的教学设计7

  目标预设:

  1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

  教学过程:

  一、引导估计,初步感知。

  1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

  2、估计圆面积大小与半径的关系。

  师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

  二、动手操作,共同探索。

  1、引发转化,形成方案。

  (1)我们如何推导三角形,平行四边形,梯形的面积公式的?

  (2)准备如何去推导圆的面积?

  2、动手操作,共同探究

  (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

  (2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

  (3)比较:与刚才老师拼成的图形有何不同?

  (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

  如果一直这样分下去,拼成的图形会怎么样?

  3、引导比较,推导公式。

  圆与拼成的长方形之间有何联系?

  引导学生从长方形的面积,长宽三个角度去思考。

  根据学生回答,相机板书。

  追问:课始我们的估算正确吗?

  求圆的面积一般需要知道什么条件?

  三、应用公式,解决问题

  1、基本训练,练练应用公式,求圆的面积。

  2、解决问题

  (1)出示例9,引导学生理解题意。

  要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

  (2)学生计算

  (3)交流,突出5平方的`计算

  四、巩固练习

  1、练习十九1求课始出示的光盘的面积

  2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

  五、这节课你有什么收获?你认为重点的

  地方有哪些?

  引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

  六、课堂作业

  补充习题51页2、3、4题

  拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

  圆的面积是多少平方厘米?

  反思:

  1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

  2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

  3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

面积的教学设计8

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的.接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。( )

  (2)半径为2厘米的圆的周长与面积相等。( )

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

面积的教学设计9

  教学目标:

  1、知识与技能:

  (1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2)培养学生应用已有知识解决新问题的能力。

  2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:三角形面积公式的推导过程。

  教学关键:让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

  教具准备:红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备: 每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

  教学过程:

  一、创设情境,揭示课题

  师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)

  教师提出问题:

  ⑴红领巾是什么形状的?(三角形)。

  ⑵你会算三角形的面积吗?

  师:这节课我们一起来学习探索三角形面积的计算方法。

  板书:三角形的面积

  [设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]

  二、探索新知

  1、寻找思路:(出示一个长方形)

  师:(1)长方形面积怎样计算?

  (2)怎样可以把这个长方形平均分成两份?

  有三种方法:

  方法一:方法二: 方法三:

  师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)

  每个三角形面积与原长方形的面积有什么关系?

  [设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]

  生:长方形的面积=长×宽

  生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。

  板书:三角形的面积=底×高÷2(直角三角形)

  师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)

  接着出示思考题:

  (1)将三角形转化成学过的什么图形?

  (2)每个三角形与转化后的图形有什么关系?

  [设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]

  2、分组操作、讨论,合作学习。

  (1)提出操作和思考要求。

  学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。

  小黑板出示讨论问题:

  ①用两个完全一样的三角形拼一拼,能拼出什么图形?

  ②拼出的图形的面积你会计算吗?

  ③拼出的图形与原来三角形有什么联系?

  (2)学生以“四人小组”为单位进行操作和讨论。

  [设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]

  平移

  旋转180°

  合拼

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)

  [设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]

  (3)学生上讲台板演。

  ①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形) (两钝角三角形) (两直角三角形)

  平行四边形平行四边形长方形

  ②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。

  师:通过动手操作,你们发现了什么?

  引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)

  师:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  生:每个三角形的面积是拼成的平行四边形的面积的一半。

  生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)

  [设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]

  3、讨论与归纳公式

  (1)讨论:(小黑板出示问题)

  ①、三角形的底和高与平行四边形的底和高有什么关系?

  ②、怎样求三角形的面积?

  ③、你能归纳出三角形的面积计算公式吗?

  [设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的.理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

  (2)归纳公式。

  学生讨论、汇报:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  教师板书:三角形面积=底×高÷2

  师:为什么要除以2?

  生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半

  师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

  结合学生回答,教师板书:s=ah÷2

  [设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?” “为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]

  4、看书质疑。

  师:你能说说,课本中是怎样得出三角形的面积计算公式的?

  (充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)

  师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)

  三、应用新知,解决问题

  师:现在同学们能帮老师解决问题了吗?

  1、计算一条红领巾的面积。

  师:你能估算出这条红领巾的底和高各是多少吗?

  生:……

  师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?

  学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

  师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)

  12.5 cm

  2、独立完成p85做一做。

  学生板演,教师点评。

  [设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

  四、深化理解、应用拓展

  1、课本86页的练习第1题。 (课件出示)

  师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

  (让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

  2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

  师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?

  (先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)

  3、判断题

  (1)三角形面积是平行四边形面积的一半。 ( )

  (2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )

  (4)等底等高的两个三角形,面积一定相等。 ( )

  (5)两个三角形一定可以拼成一个平行四边形。 ( )

  4dm

  2。5dm

  3dm

  4、求右图三角形面积。

  (要计算上图的三角形面积,强调三角形的底和高一定是对应的。)

  5、课本86页第3题:已知一个三角形的面积和底

  (如右图),求高。

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?

  (生讨论汇报,再计算、反馈。)

  6、做课本86页第4题(然后汇报、评讲。)

  要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?

  [设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

  五、总结

  师:今天这节课,我们主要学习了什么知识?你有什么收获?

  (小出示)让学生说一说图意:

  生:……

  师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

  [设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

  六、课外作业

  课本第87页“练习十六”第5、6、7题。

  板书设计

  三 角 形 的 面 积

  平行四边形的面积=底×高

  s=ah÷2

  =100×33÷2

  =1650(cm)

  三角形面积=底×高÷2

  s=ah÷2

  教学反思:

  本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

  一、小组结合动手操作

  在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

  二、引导学生发现问题、思考问题,培养合作精神

  在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

  三、应用公式解决生活中的问题

  新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

  此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

面积的教学设计10

  教学目标:

  知识目标:

  了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  能力目标:

  能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  情感目标:

  在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。

  教学重点:

  能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  教学难点:

  能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。

  教学过程:

  一、创设情境,提出问题。

  1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  2这个圆形的面积指的是哪部分呢?

  3今天这节课我们就来学习圆的面积。(板书:圆的面积)

  二、探究思考,解决问题。

  1请大家估计半径为5米的圆面积大约是多大?

  2用数方格的方法求圆面积大小

  ①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  3在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?

  2那么圆形的面积可由什么图形面积得来呢?

  3拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?

  4同学们操作,教师巡视

  5大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?

  6你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。

  ①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的.高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

  ②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。

  7用字母怎么表示圆面积公式呢?

  四、应用圆面积公式

  1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。

  2第18页第1题

  学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。

  3第18页第2题

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。

  板书设计:

  圆的面积

  平行四边形面积=底×高,

  圆形面积公式=圆周长的1/2×半径

  圆形面积公式=圆周率圆×半径2

面积的教学设计11

  教学内容:

  P33-37

  教学目的:

  1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

  2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。

  3.培养学生的动手操作能力和共同研究问题的习惯。

  4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。

  5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。

  教学重点:长方体表面积计算的基本思路和方法。

  教学难点:根据长方体的长、宽、高,确定每个面的长、宽是多少。

  教学设计:

  一、出示课题,学习目标

  1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

  二、自主探索

  分组操作,探索长方体的表面积的含义、并建立它们的联系。

  同学们,现在请大家利用桌面上的长方体、剪刀,看看把一个长方体或正方体的纸盒展开是什么形状的呢?

  请在展开图中,分别用上下前后左右标明6个面。

  观察长方体展开图,哪些面的面积相等?每个面的长和宽与长方体的长、宽、高有什么关系?

  学生分小组合作操作。

  三、各小组学生交流汇报结果。

  板书:(长×宽+长×高+宽×高) × 2 。

  板书:(长×2+宽×2)底面周长×高+长×宽×2

  长方体或正方体6个面的.总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。

  四、实践运用

  1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?

  说明"至少"的意思。

  独立计算,说说你是怎么计算的?

  2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。

  3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?

  想一想怎样计算正方体的表面积呢?

  五、评价

  体验今天你运用了什么学习方法?学习上有什么收获?你感受最深是什么?学生之间互相评价。

  六、、作业:

  1、看书

  2、实际测量

  长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。

  板书设计:

  长方体的表面积

  长方体或正方体6个面的总面积,叫做它的表面积。

  长方体的表面积= (长×宽+长×高+宽×高) × 2

面积的教学设计12

  【教学内容】西师版第十册第39页例1。

  【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。

  2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。

  4让学生体会所学知识在实际中的应用价值。

  【教学重点】

  长方体、正方体表面积的计算方法。

  【教学难点】

  确定长方体每一个面的'长和宽。

  【教具学具】

  教具:长方体、正方体纸盒(可展开)。

  学具:长方体、正方体纸盒、剪刀。

  【教学过程】

  一、复习引入

  师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?

  出示一个长方体,指名摸它的表面。

  师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。

  二、探究学习

  1探索长方体表面积的计算方法

  出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?

  4人小组合作完成这个长方体表面积的计算。

  汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。

  生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面

  师:你能把这种求表面积的方法归纳一下吗?

  生:长×宽×2+长×高×2+宽×高×2。

  生2:我们组是把6个面的面积分别算出来后再相加。

  生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。

  师:为什么求出这3个面的面积和,再乘2就可以了?

  生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。

  师:你能把这种求表面积的方法归纳一下吗?

  生:(长×宽+长×高+宽×高)×2。(师板书)

  师:观察真仔细,归纳能力真强。

  师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。

  2探索正方体表面积的计算方法

  师:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?

  出示一个正方体,让学生自主探索方法。

  汇报交流。

  生1:我是把6个面的面积加起来。

  生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。

  生3:我觉得只要求出一个面的面积再乘6就可以了。

  师:能给大家讲讲你的想法吗?

  生:正方体6个面的面积都是相同的。

  师:你能把这种求表面积的方法归纳一下吗?

  生:正方体的表面积=棱长×棱长×6。(师板书)

  三、巩固练习

  1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。

  2练习十第3题。先独立完成,再与同桌交流自己的算法。

  四、课堂小结

  通过这节课的讨论学习,你有什么收获和体会?

面积的教学设计13

  我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。

  提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。

  这节课存在的不足之处:

  首先,对学生的关注还不够。几次学生的板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。

  第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的.图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。

  第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。

  反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。仔细分析原因如下:

  一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。

  二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。

  三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。

面积的教学设计14

  学习目标:

  1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。

  2、培养观察、推理、归纳能力,体会转化思想的价值。

  3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。

  学习重点:

  探索并掌握梯形的面积计算方法。

  学习难点:

  理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。

  学习准备:

  剪下书后的梯形

  学习过程:

  一、先学探究

  ■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

  1、按算式画出相应的图形,说说自己是怎么想的?

  算式:4×34×3÷2

  2、复习梯形的有关知识:举一梯形。

  说说梯形的基本特征及各部分名称。

  ■学情预判:学生在探索并掌握梯形的'面积计算方法上可能会困惑不解,要加强引道。

  二.交流共享

  ■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。

  【板块一】学习例6:

  (1)出示例6:

  用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的两个梯形有什么特点?

  测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

  (3)如何计算一个梯形的面积?

  从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼

  成一个

  这个平行四边形的底等于

  这个平行四边形的高等于

  因为每个梯形的面积等于拼成的平行四边形面积的

  所以梯形的面积=

  (4)用字母表示梯形面积公式:

  三、反馈完善

  1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。

  2、完成P15练一练

  一个梯形的面积与整个平行四边形的面积有什么关系?

  3、P5动手做

  四、总结回顾:

  通过今天的学习,你有什么收获?想要提醒大家注意什么?

  平行四边形,学习目标,计算方法,自信心,教学

面积的教学设计15

  课题:

  “圆的面积”教学设计

  教学内容:

  义务教育课程标准实验教科书六年级上册第五单元“圆的面积”。

  教学内容分析:

  当前,“数学新课程实施应以学生数学素质的养成为核心目标,课堂教学中学经验的获得是学生数学素质养成的必要条件”已经成为大家的共识。《标准(20xx版)》的作者出:数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中透步积累的。“圆的面积”公式推导,从解决实际问题出发,引导学生用转化的方法把圆转化为长方形来计算面积。这样的过程,能够让学生深刻地体验到“化曲为直”的转化思想和“无限逼近”的极限思想。例3更是提供了一次探索问题解决方法的机会,使学生进一步提高解决问题能力。

  圆的面积研究,以计算圆形草坪的面积作为情境自然引入;光盘、环岛、古建筑中的“外方内圆” “外圆内方”、土楼的占地面积、篮球场的三分线大量的生活素材,能有效激发学生的学习热情,促使学生积极主动地去探索知识。同时,通过对这些实际问题的解决,学生也能更真切地体会数学知识的广泛应用。

  教学对象分析:

  该节课内容是专门针对正迈入小学六年级的学生来展开的,从我多年的教学经验中可以了解到,处于该阶段的很多学生对新知识的接受程度较高,因此我认为这节课对他们来说教学难度不是很大,如果在课堂上能够紧跟着老师的教学思路一起探索、一起学习,定能有所收获。

  1、学生的知识基础

  该教学内容是学会计算圆的面积。在此基础上,该年级段的学生已经学习了如何辨别圆形、计算圆的周长,指导圆的半径、直径怎么表示,也明白“π”的`含义以及其数值。小学六年级是小学阶段最后一年,也是他们在小学校园呆的最后一年,相比于其他低年级的小学生们,他们不仅在年龄上有所增长,而且在知识掌握程度方面也较全面,同时也更加地深入。

  2、对学习该内容的困惑与迷思

  学生会对“π”的来源以及它的数值具体含义了解不是很清楚,还有存在对“圆”面积公式的疑惑,它是怎样从长方形的角度推向圆的形状的。部分学生存在逻辑感不强,对推导的过程不能做到知根知底,举一反三能力较差。

  教学目标:

  本节课程的教学设计主要分为以下三个方面:即教学的认知目标、教学方法目标以及教学过程中的情感目标。

  1、教学的认知目标

  让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、教学方法目标

  让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、情感目标

  让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重点难点:

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  PPT课件、圆规、教学模具、纸张、作业本、尺子、剪刀

  教学的基本思路(或流程)

  教学过程:

  一、从旧知到新知,引入新课

  根据人教版数学教材中的实例,开展新课堂。

  1、课前回忆圆周长的计算公式

  (1)在一道题目中,已经知道圆的半径r的数值,怎样计算圆的周长C?

  (2)在一道题目中,已经知道半圆的直径R或者四分之一圆的半径r,应该怎样计算这些圆的周长C?

  2、明确圆的面积的相关定义:

  学习过程1:老师可以拿出课前准备的纸张,用圆规在纸面上画2个大小不一的平面圆,并拿出剪刀进行相应的裁剪。老师:这是两个一样的圆吗?他们一样大吗?

  学生:不一样大,一个大、一个小。

  老师:你们是怎么判断的呢?

  学生A:用眼睛看,它们明显不一样大小。

  学生B:把它们重叠在一起比较,哪个大就说明哪个是大圆,哪个是小圆。

  老师:在生活中我们凭借着肉眼来辨别这些东西的大小,那么在数学上我们是怎样判别他们的呢?这时我们伟大的数学家们就引入了一个“圆的面积”的概念,通过计算他们的面积大小来确定其大小。

  学习过程2:理清“圆的周长”和“圆的面积”之间的区别

  老师要用标准的圆形教具,动手指出圆周长和圆面积之间的区别。理清之后,归纳两者之间定义的不同,即圆的周长是指构成圆一周的密闭曲线的长度,而圆的面积是指某个圆占平面的大小。

  二、巧用游戏化形式,辅助学生理解

  学习过程1:老师使用PPT课件展示问题:一个4厘米的正方形和一个半径r为4厘米的圆形,怎么比较它们的面积大小。鼓励同学们发挥自身的想象力,对圆面积的大小进行猜想,在讨论后,老师展示结果。在此过程中(老师所呈现的PPT有猜想过程)得出,该圆面积比4个同边长的正方形比较要小,而比3个同边长的正方形要大。老师:可见,圆的面积的大小无法直接用正方形来衡量计算。

  学习过程2:老师带领学生们回忆其他几何平面图形面积(如:三角形、平行四边形、长方形等)的计算方法。老师同步PPT的内容,唤起学生们的记忆,即我们在计算一个新的平面几何图形的时候,往往会采取分割、拼接、补全等方法将其转化为熟悉的图形,开展运算,也就是化难为易。

  三、教师引领,带领学生一起推导圆面积公式

  学习过程1:探索拼接成的长方形和圆之间的关系。

  首先,老师提出问题:拼接而成的长方形和圆之间的什么联系呢?鼓励同学们开动自己的脑筋,进行思考。思考完毕,可以邀请几位同学进行回答,最后老师进行总结(展示PPT相关内容)

  圆的半径≈长方形的宽

  学习过程2:寻求其他推导方法

  开展小组讨论(4人为一学习小组):运用转化思想,来求圆的面积。讨论完毕后,小组成员可以派代表进行讲解,此过程有利于提高学生之间的合作和表达能力。

  四、实战练习,提高解题效率

  自主完成课后习题,明天上课前小组组长要汇报作业情况。同时也不布置一些作业,如下:

  计算下列圆的面积和周长(1)已知某圆r=3cm,求S和C(2)已知r=5cm,求S和C

【面积的教学设计】相关文章:

《面积与面积单位》教学设计08-14

面积教学设计08-07

面积与面积单位教学设计与分析06-03

圆的面积教学设计08-15

面积的变化教学设计02-23

《认识面积》教学设计08-18

[精选]《圆的面积》教学设计01-28

圆的面积教学设计09-25

《圆的面积》教学设计06-19