数量关系--牛吃草问题

时间:2022-07-09 23:47:51 其他 我要投稿
  • 相关推荐

数量关系--牛吃草问题

牛吃草问题又称为消长问题或牛顿问题

是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本的公式,分别是

(1)草的生长速度=(对应的牛头数×吃的较多天数-对应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;

(3)吃的天数=原有草量÷(牛头数-草的生长速度);

(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:

1.吃的天数=原有草量÷(牛头数-草的生长速度)

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

举个简单的例子

牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?

分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新生长出来的草两部分。牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),2010=10(天),

说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草

(l05)× 20=100(份)或(155)×10=100(份)。

已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。


【数量关系--牛吃草问题】相关文章:

数量关系解题技巧05-13

哲学的基本问题:思维和存在的关系03-08

表示数量少的词语08-04

我喜欢吃草莓作文01-04

我最喜欢吃草莓作文03-19

《感知5以内的数量》课后反思范文03-25

牛娃的做法大全我家牛娃的故事03-16

牛柳的做法04-11

沟通与文化的关系11-23

借条恋爱关系09-15