- 相关推荐
乘法分配律教学设计(通用15篇)
作为一名优秀的教育工作者,就不得不需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么问题来了,教学设计应该怎么写?以下是小编整理的乘法分配律教学设计,仅供参考,欢迎大家阅读。
乘法分配律教学设计1
教学内容:
教科书书第54的例题以及55页的“想想做做”。
教学目标:
1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2.课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3.探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。 教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的'例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2.掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×2 64×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4.完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
教后反思:
乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。
在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。
当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。
乘法分配律教学设计2
—乘法分配律教学设计与反思
设计说明
当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表
达数学规律的意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一:创设情境导入
提问:长方形的面积怎样求?
指明回答
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)
学生动手操作
(课件出示两个长方形组合的动画)
二:自主探索,交流合作
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的.解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
三:实践运用,初步理解。
1、想想做做1
学生自主完成,组织交流。
第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是
12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)
2、想想做做2
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个
74,也就是74.
第四小题要和想想做做题1的第二小题做对比。
四:拓展延伸,内化新知
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小
学生反馈,引导说出可以重叠比较。学生动手实践
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。
想想做做题5
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。
问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对
乘法分配律延伸的理解与内化。
反思:
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。
乘法分配律教学设计3
教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、通过观察、分析、比较,培养学生的分析、推理和概括能力。
3、发挥学生主体作用,体验探究学习的快乐。
教学重点:指导学生探索乘法的分配律。
教学难点:乘法分配律的应用。
教学准备:课件、口算题、例题、练习题等。
教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。
教学流程:
一、设疑导入
师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?
生:可以使计算简便。
师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)
【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】
二、探究发现
1。猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)
师:这道题算得怎么不如刚才的快啊?
生:它和前面的题目不一样。
师:好,我们来看一下它与前面的题目有什么不同?
生:前面的题都是乘号,这道题既有乘号还有加号。
生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。
师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。
生:(10+4)×25=10×25+4×25。
师:为什么这样算哪?
生:我是根据乘法分配律算的。
师:你是怎么知道的?你知道什么是乘法分配律吗?
生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。
师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)
2。验证。
师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)
师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)
小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?
师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?
3。结论。
生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。
师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)
师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?
(a+b)×c=a×c+b×c
师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。
【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的`可持续学习奠定了基础。】
三、练习应用
(生练习应用定律。)
师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
四、总结
师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)
反思:
本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:
一、主动探究,实现亲身经历和体验
现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。
二、多向互动,注重合作与交流
在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。
乘法分配律教学设计4
教材分析
乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的'教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长x2+宽x2,周长=(长+宽)x2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节。
教学目标
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
3、会用乘法分配律进行一些简便计算
重点难点
1、指导探索乘法分配律。
2、发现并归纳乘法分配律。
方法指导
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
预设流程
激趣导入
(约3分钟)
一、创设情境,提出问题:
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
合作交流
(约10分钟)
2、汇报交流:
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:A、225加上75的和乘4等于乘225乘4加75乘4
B、225加上75的和乘4等于225和75分别与4相乘的积再相加。)
3、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。
教师板书:
一套x4 = 4件上衣+ 4条裤子
(225+75)x4 = 225x4 + 75x4
(225+125)x4 = 225x4 + 125x4
(175+75)x4 = 175x4 + 75x4
(175+125)x4 = 175x4 + 125x4
精讲点拨
(约8分钟)
(二)、观察比较、猜测验证
1、观察比较
2、提出猜想。
师:观察上面的等式,左右两边的算式什么变了什么没变?
你们有什么发现?
3、举例验证。
让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?
学生汇报,教师根据汇报板书。
(三)、总结规律,概括模型
1、总结规律:
师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)
师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?
2、用字母表示:
师:用字母如何表示乘法分配律?
测评总结(约12分钟)
三、巩固应用,训练提升
1、请你根据乘法分配律填空
(12+40)x3=()x3+()x3
15x(40+8)=15x()+15x()
78x20+22x20=(+)x20
66x28+66x32+66x40=(+ +)x40
教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。
2、火眼金睛辨对错
56x(19+28)=56x19+56x28
(18+15)x26=18x15+26x15
(11x25)x4= 11x4+25x4
(45—5)x14 =45 x14 —5 x14
强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。
3、用乘法分配律计算下面各题。
(40+4)x25 39x8+39x6—4x39
4、拓展提高
你能用乘法分配律解决这道题吗?
86x101
四、说一说,今天我们研究了什么?你有什么收获
板书设计
乘法分配律
一套x4 = 4件上衣+ 4条裤子
(225+75)x4 = 225x4 + 75x4
(225+125)x4 = 225x4 + 125x4
(175+75)x4 = 175x4 + 75x4
(175+125)x4 = 175x4 + 125x4
乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。
乘法分配律教学设计5
教学目标:
1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教具:课件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。
生计算。
师:请选择第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选择的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:可以
板书:(72+28)×2=72×2+28×2
出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?
(生计算,汇报)
生1:我列的算式是32×64+18×64,结果是6400元。
师:有没有用不同的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。
师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎么办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的`结果都是30.
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:现在我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果一定相等。
【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】
师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?
生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。
生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。
生3:(A+B)×C=A×C+B×C
生4、(a+b)×c=a×b+a×c
生5、(○+□)×◎=○×◎+□×◎
师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?
生:第三个用小写字母的那一个。
师:你为什么觉得这个好?
生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。
师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。
(通过读式子,完善语言表达)
【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】
三、巩固应用,内化提高
1、火眼金睛,判对错。
56×(19+28)=56×19+28
64×64+36×64=(64+36)×64
32×(3×7)=32×7+32×3
2、思维敏捷,连一连。(把结果相同的两个式子连起来)
①(42+25+33)×26 ①20×25+4×25
②36×15-26×15 ②(66+34)×66
③66×66+66×34 ③42×26+25×26+33×26
④38×99+38×1 ④(36-26)×15
⑤(20+4)×25 ⑤38×(99+1)
师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。
生1、我算的是(20+4)×5=20×25+4×25,结果是600.
师:你是把两边的式子都计算了吗?
生1:没有,我是算的右边的那个式子。
师:你为什么没用左边的式子计算呢?
生1:右边的那个式子计算起来简单。
师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。
生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。
师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?
生1:不是.
生2:是,就是把它给倒过来用的。
师:是的,这是乘法分配律的逆应用,也可以用来简化计算。
生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。
师:看了这个等式,你有什么想说的?
生:我们刚才做的都是带“+”的,可是这个是“-”。
师:看来我们的乘法分配律还有新的内涵呢。
补充板书:(a-b)×c=a×c-b×c
师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?
生4:我算了,结果是2600,算的是左边的那个式子。
师:看了它,你有没有想说的?
生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。
师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?
生:能。
3、合理选择,算一算。
312×12+188×12
101×87
(53+47)×23
【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】
四、拓展延伸,引发思考。
这节课我们共同来研究了乘法分配律,除法有没有分配律呢?
板书:(a+b)÷c=a÷c+b÷c ?
同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。
【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。】
乘法分配律教学设计6
教学内容
义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律
教材分析
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
学情分析
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
教学目标
1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
教学重点
理解乘法分配律的意义。
教学难点
发现与归纳乘法分配律。
教学准备
课件习题卡
教学过程
一、结合实事创设情景,引入新课
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?
3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?
二、合作交流,探索发现新知
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。
板书:乘法分配律
2、发现和归纳乘法分配律
(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的.发现和同桌说一说好吗?
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结
同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?
四、分层练习,逐级达标
1、填一填:习题卡第一题
巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。
学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。
2、看一看:习题卡第二题
3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。
五、回顾课程,进行总结
同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?
板书设计
乘法分配律
(5+10)x24=5x24+10x24
(a+b)xc=axc+bxc
25x(4+2)=25x4+25x2
ax(b+c)=axb+axc
习题卡
填一填
1、(32+25)x4=32x()+25x()
2、(64+12)x5=()x5+()x5
3、(7+6)x8=7868
4、(43+25)x2=
5、3x6+7x6=(+)
看一看
下面哪个算式是正确的?正确的画“√”,错误的画“x”
(19+28)x56=19x56+28
(7x3)x32=7x32+3x32
64x64+36x64=(64+36)x64
乘法分配律教学设计7
教学内容
P36页例3,做一做,练习六习题。
教学目标
1、知识与技能:引导学生探究和理解乘法分配律。
2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
教学重点
乘法分配律的意义和应用。
教学难点
乘法分配律的反应用。
教学过程
一、目标导学
(一)导入新课
1、复习导入
(8+2)×1258×125+2×125
2、揭示课题:乘法分配律
(二)展示目标(见教学目标1、2)
二、自主学习
(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)
1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?
2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?
3、计算这两道题你发现了什么?能用一句话概括吗?
4、这是乘法的什么运算律?用字母怎样表示?
5、会用简便算法计算4×25+6×25吗?
(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)
(三)自学检测
下面哪些算式运用了乘法分配律?
117×(3+7)=117×3+117×7
24×(5+12)=24×17
(4+5)×a=4×a+5×a
三、合作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。
(二)师生互探
1、解答各小组自学中遇到不会的问题。
2、针对自学提纲5题请不同方法同学汇报。
3、结合“自学提纲”引导学生归纳总结:(并板书)
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。
四、达标训练(1、2题必做,3题选做、4题思考题)
1、下面哪个算式是正确的?正确的'打√,错误的打×。
56×(19+28)=56×19+28()
32×(7+3)=32×7+32×3()
64×64+36×64=64×(64+36)()
2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数
⑴25×(200+4)⑵35×201
25×200+25×435×200+35
⑶265×105—265×5⑷25×11×4
265×(105—5)11×(25×4)
3、用乘法分配律计算。
103×20xx×5524×205
4、在()里填上适当的数。
167×2+167×3+167×5=167×()
28×225—2×225—6×225=()225
39×8+6×39—39×4=()×()
五、堂清检测
(一)出示检测题(1-2题必做,3题选做,4题思考题)
1、用简便方法计算。
24×75+24×25125×22—125×14
(25+20)×435×99+35
2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?
3、计算。
89×10135×36+35×63+35
4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?
(二)堂清反馈:
作业布置
练习册相关习题。
板书设计
乘法分配律
一共有多少名同学参加了这次植树活动?
(1)(4+2)×25(2)4×25+2×25
=6×25=100+50
=150(人)=150(人)
(4+2)×25=4×25+2×25
(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
乘法分配律教学设计8
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:乘法分配律的反应用.
教具:教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算
板书:65×5+45×5 (65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的.总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)× 25 34 ×72+34 ×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四 、巩固内化
1、 做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、 做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、 做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、 做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
五、 总结回顾
乘法分配律教学设计9
教学目标:
1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重难点:
发现并理解乘法分配律。
教学准备:挂图、小黑板。
教学流程:
一、创设情境,导入新课。
师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。
看看买什么衣服好看呢。
二、自主探索,合作交流。
1.出示:买5件夹克衫和5条裤子,一共要付多少元?
师问你打算怎样算?
生口答师板书:
(65+45)×565×5+45×5
请学生分别说清两道算式的含义。
2.师问猜想一下,这两道算式的结果会怎样?
要验证我们的算式是否正确,应该用什么方法?
生计算,个别板演。
证明这两道算式的结果是相等的。
中间应用“=”接连。
3.生读算式(65+45)×5=65×5+45×5
师问等号两边的算式有什么相同和不同?
生同桌说一说,并汇报。
4.这两道算式相等是一种巧合还是有规律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
师问中间可以用“=”来连接吗?
5.小组讨论:这三组等式左边有什么特点?
右边有什么特点?
生汇报。
6.师问你能写出具有这样规律的等式吗?
生独立写一写,个别板书。
7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?
生写一写,个别板演。
8.揭题:乘法分配律
(a+b)×c=a×c+b×c
9.师总结两个数的.和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。
三、巩固练习,拓展应用。
想想做做:
1.在口里填上合适的数,在○里填上运算符号。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
强调:乘法分配律,可以正着用,也可以反着用。
2.横着看,在得数相同的两个算式后面画“√”
(28+16)×728×7+16×7
15×39+45×39(15+45)×39
74×(20+1)74×20+74
40×50+50×9040×(50+90)
3.算一算,比一比,每组中哪一道题的计算比较简便。
(1)64×8+36×825×17+25×3
(64+36)×825×(17+3)
让学生体会乘法分配律可以使计算简便。
4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。
生独立完成并汇报。
5.你能根据下图列出两
道综合算式吗?
上面的两道算式能组成一个等式吗?
四、全课小结
师问今天你有什么收获?和你的小伙伴说一说。
五、课堂作业
《补充习题》第26页。
乘法分配律教学设计10
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。
2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一、创设情境,谈话导入
谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)
二、自主探究,合作交流
1、交流算法,初步感知。
提问:从图中你获得了哪些信息?
再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。
谈话:两个算式解决的.都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师板书,让学生读一读。
谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5。
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
启发:比较这两个等式,它们有什么相同的地方?
2、深入体验,丰富感知。
引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?
要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。
学生举例并组织交流。
3、揭示规律。
提问:像这样的等式,写得完吗?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]
三、实践运用,巩固内化
1、“想想做做”第1题。
谈话:下面我们利用乘法分配律解决一些简单的问题。
出示“想想做做”第1题,让学生在书上填一填。
学生完成后,用课件反馈。
2、“想想做做”第2题。
你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。
回答第2小题时,让学生说一说理由。
3、“想想做做”第3题。(略)
四、梳理知识,反思总结
提问:今天这节课,你有什么收获?有什么感受想对大家说?
五、布置作业
“想想做做”第4、5题。
[说明]
数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。
乘法分配律教学设计11
学习内容:
人教版小学四年级下册第三单元乘法分配律
学习目标:
1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。
2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。
3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。
学习重难点
借助乘法的意义理解乘法分配律的意义和内涵。
配套资源
实施资源:
《乘法分配律》教学课件
学习过程:
一、情境导入,引入新课
师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。
请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大
二、学习新知
①自主探索,独立解决问题
请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢
把你想到的图形画在练习本上。并试着去解决这个问题。
②汇报交流,明确算法
谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。
③全班反馈(课件动态演示)
先来看第一种方法:
可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)
(设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的实际意义是什么,对理解另一种方法打下基础。)
再来看第二种方法,可以先算出果园原来的`面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)
(设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)
同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)
(设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)
②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样
如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢
( +▲)×★=×★+▲×★
(设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的注意力更加集中了。)
③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。
验证;(100+50)×40=100×40+50×40
结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。
同学们,你们真厉害,你们所发现的规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c
三、巩固练习:
1、请看下面这个算式,(40+8)×25
结合刚才的长方形的面积,你想到了什么
我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。
2、计算59×20+41×20
师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢
59×20+41×20
=(59+41)×20我们可以先求出一套衣服多少元再乘以
=100×20它的套数,是不是计算更简单呢
=20xx
亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!
乘法分配律教学设计12
学情分析:
乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。
教学目标:
1.理解并掌握乘法分配律并会用字母表示。
2.能够运用乘法分配律进行简便计算。
3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。
4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学过程:
一、情景激趣,提出猜想
1.情景
暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)
出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?
(设计意图:以学生熟悉的学校中的.大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)
①整理条件、问题
从这段资料中你知道了那些信息?王老师遇到了哪些问题?
②学生列式,抽生回答: (18+23)×8, 18×8+23×8
③交流算式的意义
第一个算式先算什么?再算什么?第二个算式呢?
④计算:(发现两个算式结果相等)
⑤观察、分析算式特点
咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!
现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?
⑥全班交流,引导学生从下面几个方面进行思考
A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。
B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。
C.计算结果:结果相等。
(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)
2.提出猜想
真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?
怎样才能知道像这样的算式都有这样的规律?
引导学生想到用举例的方法进行验证。
师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。
(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)
二、举例验证,证明合理性
1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。
2.分组举例
两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。
3.交流:谁愿意把你举的例子和大家一起分享?
A.这个式子符合要求吗?
B.这些式子都有一个共同的规律,这个共同的规律是什么?
教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。
(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)
三、概括归纳,建立模型
1.个性概括
这样的式子你们还能写吗?能写完吗?
强调这样的例子还有很多很多,是写不完的。
你能用一个式子将所有的像这样的式子都概括出来吗?
学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。
2.统一认识
教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成
(a+b)×c=a×c+b×c
给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。
3.进一步认识
这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。
齐读式子。
(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)
四、巩固应用,深化认识
1.哪些算式与72×35相等
72×30+72×5
72×35 72×30+5
70×35+2×35
70×35+2
问:为什么相等?
(设计意图:让学生理解乘法分配律的本质意义)
2.你会填吗?
(10+7)×6= ×6+ ×6
8×(125+9)=8× +8×
7×48+7×52= ×( + )
问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。
(设计意图:学生进一步深刻理解乘法分配律)
3. 7×48+7×52 7×(48+52)
这两个式子你想选择哪个进行计算?为什么?
如果只给你第一个式子,你会想办法让你的计算变得简便吗?
小结:利用乘法分配律有时候可以使计算变得更简便。
(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)
<<<1234>>>
4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。
①34×72+34×28(订正时问:为什么不直接算)
(80+4)×25
订正时问:把(80+4)×25写成80×25+4×25依据是什么?
如果不用好不好算?
(80+20)×25
问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?
教师小结:在计算中要根据数据特点,灵活运用乘法分配律。
②21×25 75×99+75
小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。
(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)
五、全课小结
孩子们,你们今天收获了什么?
当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?
板书设计
乘法分配律
(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)
=41×8 … … … …
=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25
18×8+23×8 … … … … (80+20)×25
=144+184 个性概括:… …
=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75
乘法分配律教学设计13
《探索与发现(三)乘法分配律》教学反思
东新四小学 王唯
教学内容:
小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页
教学目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:理解乘法分配律的特点。
教学难点:乘法分配律的正确应用。
教学过程:
一、复习回顾
(出示课件1)计算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
(125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。
二、探究发现
(出现课件2)
师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?
生:我发现有两个叔叔在贴瓷砖
生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。
师:你最想知道什么问题?
生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?
生:我估计大约有100块瓷砖
生:我估计大约有90块瓷砖。
师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)
师:谁来向大家介绍一下自己的做法?
生:6×9+4×9(板书)
=54+36
=90
分别算出正面和侧面贴的块数,再相加,就是贴的总块数。
生:(6+4)×9(板书)
= 10×9
=90(块)
因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。
师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?
生:我发现计算方法不同,但结果却是一样的。
6×9+4×9 = (6+4)×9(板书)
师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?
(学生举例,教师板书)
师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)
小组1:符合要求,因为每组中两个算式都是相等的。
小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。
(板书用=连接算式)
师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。
小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。
小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。
师:大家齐读一遍。
师:和同桌说一说自己对乘法分配律的.理解。
师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。
(a+b)×c=a×c+b×c
师:这叫做乘法分配律
三、巩固练习:
1、计算
(80+4)×25 34×72+34×28
师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
2、判断正误
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、总结
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
[板书设计]
探索与发现(三)
-----乘法分配律
(a+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
(40+4)×25 = 40×25+4×25
(64+36)×42 = 42×64+42×36
乘法分配律教学设计14
【教学目标】
1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
2、能根据算式各自的特征,选择使用、灵活计算。
3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!
4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!
【教学重点】
深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
【教学难点】
1、能根据算式各自的特征,选择使用、灵活计算。
2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的转化能力!
【教学过程】
环节
教师活动
学生活动
设计意图
一、回顾引入
1、我们昨天学了……,请写出依据(字母表达式)
2、看着这个字母表达式,你想说点什么?
1、学生一起回答省略部分
2、学生各自在自己草稿本上写出字母表达式
3、让学生充分表达!
以忆引练,为接下来的练习做知识铺垫准备!
二、开展练习
分别出示:
1、基础题
(1)选择题
(2)填空题
(3)用简便方法计算
1、口答选择题
2、笔写填空题
3、比赛方式完成简便计算
1、通过选择和填空两种题型,让学生进一步体会乘法分配律的现实意义及其算式结构。
2、训练准确简便计算能力,也是巩固新课掌握的'计算方法
小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。
2、提高题(计算各题,怎样简便就怎么算)。
1、先标出你认为能够简便计算的题
2、动笔计算,并验证自己的观察
养学生观察力、细心力、分析力、和计算灵活性。
小结:一看、二想、三算
3、拓展题(能快速算出下面各题吗?)。
用作选做题:做你会计算的题
训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要
小结:变看似不能简便计算为能够简便计算
三、全课总结
1、涵盖小结内容
2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。
乘法分配律教学设计15
设计思路:
本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。
一、教学内容
义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。
二、教材内容分析:
《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要
三、学生情况分析:
今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。
四、教学目标
针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标.
知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。
过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。。
情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。
五、教学重点、难点
重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。
难点:难点是理解乘法分配律的意义及应用。
六、教学准备:交互式多媒体、课件ppt.(以下均为做课课件)
七、教法、学法:
(1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。
(2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。
八:教学过程:
(一)、谈话导入、激发兴趣。(课件出示图片ppt4)
1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)
设计意图:看我们中国的'语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢
使学生带着问题,带着对算式的好奇心进入本科的学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义
(二)、创设生活情境,引入新课。
谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。
(课件出示主题图)(课件出示图片ppt5)
3.提问:(出示ppt6)
(1)你从图中获得了哪些信息
(2)今天我们要解决的问题是什么
预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”
设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。
(三)、自主探索、合作交流。(课件出示ppt7)
一)初步感知
1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的
2.学生解答后汇报。
追问:还有不同的想法吗
板书:(4+2)×25 4×25+2×25
3.组织交流
(1)说说每道算式的意思
预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。
(2)比较最后的计算结果。(相同)
追问:可用等号连接吗写成一个算式。
板书:(4+2)×25 = 4×25+2×25
读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律。
观察,这道等式左边和右边有什么相同的地方和不同的地方
请跟你的同桌说说。全班汇报。
相同的地方:结果相同,每个算式都有3个数。
不同的地方:运算顺序不同。
设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性
(二)、猜想验证。(课件出示ppt9)
1.小组内写一写,算一算,举出这样的例子。
2.汇报交流。
3.引导学生总结概括。(提示:等式左右两边是怎样计算的)
预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;
而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。
(三)、同类推广,总结归纳。(出示ppt10、11)
1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的本子上写一写。
2.你是怎样验证的。
3.同桌互相验证。
4.用符号表示:这样的式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)
5.揭示课题(小结:出示ppt12)
我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。
6.统一用字母表示:(课件出示ppt13)
如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的式子吗
(a+b) ×c=a×c+b×c
总结规律:
(a+b) ×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。
设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。
1、既然左边=右边,那右边等于左边,谁来读一读。
2、从右往左看,这个式子有什么特征
3、乘法分配律可以从左边用到右边,也可以从右边用到左边。
设计意图:让学生明白:乘法分配律左右两边可以相互逆用。
(四)、巩固应用,拓展延伸。(出示课件ppt16)
1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
问题:说一说你的判断理由。
2.下面哪些算式运用了乘法分配律(出示课件ppt17)
117×3+117×7=117×(3+7) ( )
4×a+a×5=(4+5)×a ( )
24×(5+12)=24×17 ( )
36×(4×6)=36×6×4 ( )
3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)
4.观察下面的竖式,说一说在计算的过程中运用了
什么运算定律。出示课件ppt19
25×12=25×2+25×10
5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)
103×12 20×55
6、回顾、拓展
1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗
学生回答,师板书。(在原有算式上添上减号即可)
(4-2)×25 = 4×25-2×25
2、说说算式所表达的意思。
3、进一步完善乘法分配律。字母表示为:(a-b) ×c=a×c-b×c
[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]
(五)、课堂小结
这节课你学会了什么请说一说。
板书设计乘法分配律
(4+2)×25 = 4×25+2×25
(a+b) ×c=a×c+b×c a×(b+c)=a×b+a×c
两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。
教学反思
乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。