三角形的面积教学设计

时间:2024-09-18 19:19:23 设计 我要投稿

三角形的面积教学设计(精选15篇)

  作为一名人民教师,常常要写一份优秀的教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么优秀的教学设计是什么样的呢?下面是小编为大家整理的三角形的面积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

三角形的面积教学设计(精选15篇)

三角形的面积教学设计1

  教学内容:

  人教版小学数学五年级上册

  作者及工作单位何小婷

  西安市长安区灵沼乡冯村小学

  教材分析

  三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算的基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础。

  学情分析

  三角形面积的知识基础是:三角形底和高的认识以及长方形、正方形和平行四边形面积计算公式。知识的增长点是三角形面积公式。这一知识是后面学生学习梯形面积计算以及今后学习的重要基础。

  其探究的过程与方法的基础是在《比较图形的面积》和《地毯上的图形面积》两个专题中蕴含的割补法、增补法(分割、平移、旋转),以及平行四边形面积推导过程中蕴含的“根据一定的条件和方法将未知转化为已知”的数学思想和方法。能力的增长点在于利用旋转将两个完全相同的三角形拼成一个平行四边形,以及根据一定的条件(平分高或边)利用分割与旋转的方法将一个三角形转化成平行四边形,进一步体验“转化”的思想和方法。

  本节课的设计着重在“以学生的发展为中心”的理念,将学生的已有知识结合来自生活常识的实例做为重要的课堂生成资源,运用有趣的教学手段,突破学生的思维定势,给学生充分发散思维的空间。

  教学目标

  1、探索并推导三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的'实际问题。

  2、培养学生应用已有知识解决新问题的能力。渗透数学转化思想方法。

  3、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  4、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:探索并推导三角形面积计算公式,能正确计算三角形的面积。

  教学难点:三角形面积公式的探索过程。

三角形的面积教学设计2

  教学内容:

  《现代小学数学》第九册第31~35页,三角形面积的计算。

  教学目标:

  一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  二、能运用三角形面积计算公式进行有关的计算。

  三、渗透对立统一的辩证思想。

  教学过程:

  一、复习引入。

  1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

  出示:

  2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

  3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

  【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

  二、新课展开。

  (一)实践活动。

  1.让学生拿出已准备好的如下一套图形。(同桌合作)

  (1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

  (2)找出与平行四边形等底等高的三角形,将相应的`编号填入表格内。

  (3)分组讨论:

  ①各三角形的面积是多少?请填入表格内。

  ②三角形的面积怎样计算?

  (4)汇报、交流,初步得出三角形面积计算方法。

  【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

  2.验证。

  (1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

  数学课堂教学参谋

  (2)汇报、交流:学生有几种剪拼法,就交流几种。如:

  ①

  6×4÷2 6×(4÷2)

  =12(平方厘米) =12(平方厘米)

  ②

  6×4÷2 6÷2×4

  =12(平方厘米) =12(平方厘米)

  【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

  (二)归纳、小结。

  1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

  2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

  (三)应用。

  例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

  学生试做后,反馈、评讲。

  【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

  三、巩固练习。

  (一)基本练习。

  1.口算出每个三角形的面积。

  ①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

  2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

  这些三角形的高都是____厘米,底都是____厘米。

  这些三角形的面积都是:□×□÷2=□(平方厘米)。

  3.先量一量,标出图形的长度后,再计算各三角形的面积。

  【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

  (二)分层练习。

  a组学生:做选择题。

  ①求右图面积的算式是( )。

  a.9×4÷2 b.15×4÷2

  c.15×9÷2 d.15×4

  ②求右图面积的算式是( )。

  a.5.2×3.5÷2

  b.5.2×4.1÷2

  c.4.1×3.5 d.4.1×3.5÷2

  ③求下图面积的算式是( )。

  a.25×20 b.18×25

  c.18×20 d.18×20÷2

  b组学生:做课本第15页第

  ②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

  c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

  【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

  四、课堂小结。

  这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

  【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

  五、布置作业。(略)

  (此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形的面积教学设计3

  一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。

  二、学习目标:

  知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。

  情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  三、教学重难点:

  教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。

  教学难点:理解三角形面积计算公式的推导过程。

  四、教学准备:

  课件、三角形纸片、剪刀等。

  五、教学过程:

  一、复习引入

  亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。

  让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?

  其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?

  通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah

  今天就让我们一起来学习这些平面图形中的三角形的'面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。

  二、新课探究

  请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。

  请先看操作要求。

  操作要求:

  1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。

  2.按照商讨的方案,动手操作,验证商讨方案。

  3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的面积计算方法。

  现在请带着这样几个问题开始操作吧。

  问题:

  1.你们用两个怎样的三角形拼图?能拼出什么图形?

  2.拼出的图形的面积你会算吗?

  3.拼出的图形与原来的三角形有什么联系?

  请各小组选派一名同学来说一说。

  让学生按照问题去说,一边说一边指着图形。

  现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。

  拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。

  拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。

  拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。

  同学们那你们现在能得出三角形的面积计算公式吗?

  大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?

  这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。

  同学们现在你们知道三角形的面积该怎么计算了吗?

  那现在老师考考大家。

  三、巩固练习

  请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。

  同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。

  同学们真棒,会计算红领巾的面积了。

  看来大家掌握地还不错,那同学们老师再考考大家一点简单的。

  二.我会填

  (1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?

  (2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。

  三.我是小法官。(对的打“?”,错的打“×”)

  (1)两个直角三角形一定可以拼成一个长方形。

  (2)两个三角形的面积相等,形状一定也相同。

  (3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。

  同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?

  四、课堂小姐

  同学们,通过这节课的学习你有什么收获?

  同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。

  同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。

  今天的课就上到这,同学们再见。

  六、布置作业:数学课本第93页习题。

  七、板书设计:三角形的面积

  学生作品展示

  三角形的面积公式:S=ah÷2

  教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。

三角形的面积教学设计4

  教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:三角形面积计算公式的推导过程

  教学难点:在转化中发现内在联系及推导说理。

  教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。

  设计思路:

  本节课有以下几个特点:

  1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。

  2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。

  教学过程

  一、创境引新

  1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)

  这个公式是怎样推导出来的呢?

  电脑动态演示割拼的转化过程。

  形成板书:

  转化 找关系 推导

  学生看大屏幕,

  口答:s=ah

  学生口述平行四边形面积公式的推导过程。

  2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?

  三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)

  生可能会说:求出它的面积。

  二、自主探索

  合作交流1、谈话启思。

  我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?

  2、操作探索。

  (1)四人小组合作进行操作、探索。

  (2)小组汇报、交流、展示。

  学生可能会拼出以下图形:

  (3)课件演示拼出的各种图形。

  (4)设疑:

  这些图形中哪些图形的面积你会计算?

  通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?

  你能不能很快的把两个完全相同的三角形拼成平行四边形。

  老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?

  电脑演示转化的动态过程。

  (5)找关系。

  师:拼成的平行四边形与原三角形有什么关系?

  课件出示:

  a.拼得的平行四边形的底与原三角形的底有什么关系?

  b.拼得的平行四边形的高与原三角形的高有什么关系?

  c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?

  (6)汇报

  在学生回答的基础上师用电脑演示。

  (7)尝试推导说理。

  师:根据你们的发现,你能推导出三角形的面积计算公式吗?

  在学生的汇报中形成板书:

  三角形的面积=平行四边形的面积÷2

  底 × 高

  = 底× 高÷2

  师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?

  完善板书:s=ah÷2

  学生口答:长方形、平行四边形。

  生:两个完全一样的三角形能拼成平行四边形。

  学生操作,感到不是很容易。

  学生观看转化过程。

  尝试旋转、平移的`方法。

  小组讨论交流。

  小组派代表发言。

  学生讨论后回答,并说说自己是怎样推导的?

  学生发言。

  学生齐说:s=ah÷2

  3、探究用一个三角形进行割补转化推导。

  师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?

  师:下面我们来观察电脑上是怎样操作的?(点击课件)

  师:同学们若有兴趣,课后可以继续探索不同的割补方法。

  小组合作探究,

  汇报交流。

  学生观看运用割补法将一个三角形转化成平行四边形过程。

  三、实践应用

  拓展提高

  1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?

  你能估计一下它的底有多长吗?(课件出示红领巾)

  一条红领巾的面积是多少平方厘米?

  2、看图计算面积。

  3、你认识这些道路交通标志吗?谁来说说。

  (课件出示)

  师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)

  你来帮他们算算需要多少铁皮?

  4、判断。

  (1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()

  (2)、等底等高的两个三角形,面积一定相等。()

  (3)、两个三角形一定可以拼成一个平行四边形。()

  (4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

  5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。

  学生估计底的长度。

  学生独立完成,一人板演。做完后集体订正。

  学生口述列式。

  通过图3知道要用对应的底和高计算面积。

  学生说说自己认识交通标志。

  学生独立完成,然后交流。可能出现下面两种方法。

  方法一:s=ah÷2

  =7.8×9÷2

  =35.1

  35.1×2=70.2(平方分米)

  方法二:s=ah

  =7.8×9

  =70.2(平方分米)

  学生判断,并说明理由。

  四、评价体验

  通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)

  学生之间互相评价。

  教学反思:

  1、利用远程教育资源,创设教学情景。

  利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。

  2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。

  数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。

  割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。

  3、利用远程教育资源,提高学生应用新知识的能力。

  练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。

  总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。

三角形的面积教学设计5

  教学内容:

  人教版五年级上册第五单元第84~87页内容

  教学目标:

  1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:

  探索并掌握三角形的面积公式,能正确计算三角形的面积。

  教学难点:

  理解三角形面积公式的推导过程。

  教学准备:

  多媒体课件、三角形学具。

  教学过程:

  一、创设情境,引出课题

  课件出示一个平行四边形。

  师:这是什么图形,你会计算它的面积吗?说一说怎么算。

  根据学生的回答,板书:平行四边形的面积=底×高

  师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?

  学情预设:学生一般有以下两种分法:

  师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?

  学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。

  师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)

  师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)

  师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

  【设计意图】:

  从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

  板书课题:三角形的面积

  二、自主探索,得出公式

  1、动手实验。

  师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。

  学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。

  【设计意图】:

  给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

  2、学生代表上台演示汇报

  师:你是如何推导出三角形的面积公式的?谁来给我们演示?

  演示一:把两个完全一样的三角形拼成平行四边形。(如下图)

  师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的'面积可以怎么计算呢?

  根据学生的回答,教师板书如下:

  三角形的面积=平行四边形的面积÷2=底×高÷2

  展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)

  师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。

  根据学生的回答,教师板书如下:

  三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2

  师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

  三、学以致用,解决问题。

  师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

  1、计算生活中的三角形的面积

  (1)计算红领巾的面积

  师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)

  (课件出示例2)

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  师:请同学们算一算。

  (学生练习后讲评订正)

  (2)计算三角形标志牌的面积

  师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))

  师:都是这样做的吗?为什么不用3.2×3÷2呢?

  (因为3.2分米不是3分米对应的底。)

  师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?

  (3.2×3.75÷2)

  师:通过这道题的解答,你明白了什么?

  师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。

  (3)认识道路交通警示标志。

  师:请看屏幕。(多媒体出示)

  师:你们认识这些交通警告标志吗?

  (学生回答后,老师边小结,课件边出示各标志的含义)

  师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)

  (学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)

  (4)画面积相等的三角形。

  师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)

  师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

  (学生打开书87页,在书中画一画,完成第6题)

  师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)

  师:通过画这样的三角形,你发现了什么?

  生:三角形的面积与底和高有关,与形状无关。

  【设计意图】:

  通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕

  四、课堂小结

  师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?

  (学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)

  五、布置作业:

  课本P86--87页第2、4、5题

三角形的面积教学设计6

  教学内容:

  《探索活动(二)三角形面积》

  教学目标:

  在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。

  教学重点:

  三角形面积公式的建立;利用分割与旋转进行图形转化

  教学难点:

  三家形面积公式的概括;利用分割与旋转进行图形转化

  教法设计:

  教学媒体的准备:

  学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。

  教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。

  教学过程设计:

  一、温故孕新,提出问题

  ⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?

  学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式

  教师提问:谁能说一说平行四边形面积计算公式的推导过程?

  学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。

  (设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)

  ⒉教师利用课件出示教材p25主题图

  教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。

  (设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)

  ⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:

  三角形面积

  教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。

  (设计意图:学生在教师的指导下自我提出学习的内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)

  二、观察对比,设想转化

  ⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,

  预计学生可能提出以下两种方案

  ⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)

  ⒉教师利用电脑课件再出示一个平行四边形(如右图),

  引导学生与三角形进行观察对比,

  思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。

  (设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)

  三、动手操作,体验转化

  ⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)

  在转化过程中的三角形和平行四边形有什么关系?

  教师引导学生分析思考的含义

  ⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。

  ⒊学生汇报探究的成果

  预计有以下几种情况:

  ⑴拼:

  ①用两个完全相同的三角形拼成一个平行四边形

  教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?

  完全相同——形状,面积都相等(板书)

  总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

  ②通过割补把一个三角形拼成平行四边形

  教师提问:为什么选择两条边的中点连线进行分割?

  (原因:平行四边形的对边相等)

  总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。

  教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

  ⑵剪:将一个平行四边形剪成两个三角形

  总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

  ⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?

  学生思考,口述,

  总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的.平行四边形面积的一半。)

  (设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)

  四、建立公式,实践应用

  ⒈归纳公式

  教师谈话:请同学们打开教材p25,学生阅读教材。

  教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上

  三角形面积=___________________________

  如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:

  s=_______________

  学生思考,交流,填写,口述,教师板书

  三角形面积=底×高÷2;s=ah÷2

  ⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?

  ⒊回归问题:

  教师谈话:现在我们能求这个三角形的面积了吗?

  学生重新审题,独立完成,口述,教师板书

  4×3÷2=6(cm2);答:它的面积6cm2。

  ⒋巩固练习:完成教材p26试一试。

  学生独立完成,板演,教师订正

  (设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)

  作业设计:

  ⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。

  ⒉完成教材p26练一练第1题。

  板书设计:(略)

三角形的面积教学设计7

  教学内容:三角形面积计算的练习(练习十八5~10题)

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:展示台

  教学过程:

  一、基本练习

  1.填空。

  (1)三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  (2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。

  2、练习十六2题

  二、指导练习

  1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪两个三角形的面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来

  2.练习十六第7题

  (1)让学生尝试分。

  (2)展示学生的作业

  可能有:a、根据等底等高的`三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。

  b、也可把原三角形先二等分,再把每一份分别二等分。

  3、练习十六9*

  让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4

  4.练习十六第3题:已知一个三角形的面积和底,求高?

  让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。

  三、课堂练习

  练习十六第8*题。

  四、作业

  练习十六第4、5题。

  课后记:

三角形的面积教学设计8

  教学目标:

  1、知识与技能:

  (1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2)培养学生应用已有知识解决新问题的能力。

  2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:

  探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:

  三角形面积公式的推导过程。

  教学关键:

  让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

  教具准备:

  红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备:

  每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

  教学过程:

  一、创设情境,揭示课题

  师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗?(把红领巾展开贴在黑板上)

  教师提出问题:

  ⑴红领巾是什么形状的?(三角形)。

  ⑵你会算三角形的面积吗?

  师:这节课我们一起来学习探索三角形面积的计算方法。

  板书:三角形的面积

  [设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]

  二、探索新知

  1、寻找思路:(出示一个长方形)

  师:(1)长方形面积怎样计算?

  (2)怎样可以把这个长方形平均分成两份?

  有三种方法:

  方法一:方法二: 方法三:

  师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)

  每个三角形面积与原长方形的面积有什么关系?

  [设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]

  生:长方形的面积=长×宽

  生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。

  板书:三角形的面积=底×高÷2(直角三角形)

  师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一齐来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)

  接着出示思考题:

  (1)将三角形转化成学过的什么图形?

  (2)每个三角形与转化后的图形有什么关系?

  [设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]

  2、分组操作、讨论,合作学习。

  (1)提出操作和思考要求。

  学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。

  小黑板出示讨论问题:

  ①用两个完全一样的三角形拼一拼,能拼出什么图形?

  ②拼出的图形的面积你会计算吗?

  ③拼出的图形与原来三角形有什么联系?

  (2)学生以“四人小组”为单位进行操作和讨论。

  [设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]

  平移

  旋转180°

  合拼

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)

  [设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]

  (3)学生上讲台板演。

  ①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形)(两钝角三角形)(两直角三角形)

  平行四边形平行四边形长方形

  ②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。

  师:通过动手操作,你们发现了什么?

  引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)

  师:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  生:每个三角形的面积是拼成的平行四边形的面积的一半。

  生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)

  [设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]

  3、讨论与归纳公式

  (1)讨论:(小黑板出示问题)

  ①、三角形的底和高与平行四边形的底和高有什么关系?

  ②、怎样求三角形的面积?

  ③、你能归纳出三角形的面积计算公式吗?

  [设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的`理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

  (2)归纳公式。

  学生讨论、汇报:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  教师板书:三角形面积=底×高÷2

  师:为什么要除以2?

  生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半

  师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

  结合学生回答,教师板书:s=ah÷2

  [设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?”“为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]

  4、看书质疑。

  师:你能说说,课本中是怎样得出三角形的面积计算公式的?

  (充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)

  师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)

  三、应用新知,解决问题

  师:现在同学们能帮老师解决问题了吗?

  1、计算一条红领巾的面积。

  师:你能估算出这条红领巾的底和高各是多少吗?

  生:……

  师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?

  学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

  师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)12.5cm。

  2、独立完成p85做一做。

  学生板演,教师点评。

  [设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

  四、深化理解、应用拓展

  1、课本86页的练习第1题。(课件出示)

  师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

  (让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

  2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

  师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?

  (先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)

  3、判断题

  (1)三角形面积是平行四边形面积的一半。( )

  (2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )

  (4)等底等高的两个三角形,面积一定相等。( )

  (5)两个三角形一定可以拼成一个平行四边形。( )

  4dm

  2.5dm

  3dm

  4、求右图三角形面积。

  (要计算上图的三角形面积,强调三角形的底和高一定是对应的。)

  5、课本86页第3题:已知一个三角形的面积和底

  (如右图),求高。

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?

  (生讨论汇报,再计算、反馈。)

  6、做课本86页第4题(然后汇报、评讲。)

  要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?

  [设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

  五、总结

  师:今天这节课,我们主要学习了什么知识?你有什么收获?

  (小出示)让学生说一说图意:

  生:……

  师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

  [设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

  六、课外作业

  课本第87页“练习十六”第5、6、7题。

  板书设计

  三角形的面积

  平行四边形的面积=底×高

  s=ah÷2

  =100×33÷2

  =1650(cm)

  三角形面积=底×高÷2

  s=ah÷2

  教学反思:

  本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来“教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

  一、小组结合动手操作

  在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

  二、引导学生发现问题、思考问题,培养合作精神

  在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

  三、应用公式解决生活中的问题

  新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

  此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

三角形的面积教学设计9

  教学目标

  及重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  板书设计

  教后记

  教和学的过程

  内容教师活动学生活动

  一、练习

  二、总结一、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  二、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的'乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  五、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。

三角形的面积教学设计10

  一、教学目标

  (一)知识与技能

  让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  二、教学重难点

  教学重点:探索并掌握三角形面积计算公式。

  教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。

  四、教学过程

  (一)复习铺垫,激趣引新

  1.复习旧知。

  (1)计算下面各图形的面积。(PPT课件演示)

  (2)创设情境。

  同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?

  2.回顾引新。

  (1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?

  (2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)

  (二)主动探索,推导公式

  1.操作转化。

  (1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?

  (2)请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的`面积公式。动手前,注意老师提出的这几个问题:

  你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)

  学生分组操作,教师巡视指导。

  (3)学生展示汇报。

  预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。

  预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。

  预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。

  (4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?

  学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。

  2.观察思考。

  (1)观察拼成的平行四边形和原来的三角形,你发现了什么?

  (2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。

  3.概括公式。

  (1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)

  (2)总结公式。

  ①板书公式:三角形的面积=底×高÷2。

  ②用字母表示三角形面积计算公式。(PPT课件演示)

  (3)回顾与小结。

  ①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的?

  ②教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的平行四边形的底相等,原三角形的高与拼成的平行四边形的高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。

  4.除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。

  (1)小组讨论:怎样剪拼可以推导出三角形的面积公式?

  (2)交流汇报(请学生展示剪拼过程)

  平行四边形的面积=底×高

  ↓↓

  (三角形的面积)(三角形的底)(三角形高的一半)

  三角形的面积=底×高÷2

  (三)巩固运用,解决问题

  1.请同学们比较一下,两个不一样的三角形能不能拼成一个平行四边形?为什么?

  2.讨论:谁说的对

  叔叔:两个三角形能拼成一个平行四边形

  小明:三角形的面积是平行四边形面积的一半

  小玲:两个面积相等的三角形一定能拼成一个平行四边形

  小红:两个完全一样的三角形能拼成一个平行四边形

  3.填空

  用两个完全一样的三角形可以拼成一个(),平行四边形的高等于()的高,平行四边形的底等于三角形的()。三角形的面积等于拼成的平行四边形面积的(),所以三角形的面积就等于()×()÷(),用字母表示是()

三角形的面积教学设计11

  教学内容:

  三角形的面积第84-85页

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积、

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

  教学过程

  复习导入:

  1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式、

  1、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2、用两个完全一样的直角三角形拼、

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  3、用两个完全一样的锐角三角形拼、

  (1)组织学生利用手里的学具试拼、(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  4、用两个完全一样的钝角三角形来拼、

  (1)由学生独立完成、

  (2)演示课件:拼摆图形

  5、讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的'面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  7、教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1、由学生独立解答、

  2、订正答案(教师板书)

  三、总结:

  (一)总结这一节课的收获,并提出自己的问题、

  (二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

  四、反馈练习

  计算下面每个三角形的面积、

  1、底是4.2米,高是2米;

  2、底是3分米,高是1.3分米;

  (三)判断

  1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

  2、等底等高的两个三角形,面积一定相等。( )

  3、两个三角形一定可以拼成一个平行四边形。( )

  4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

  板书设计

  三角形的面积

  平行四边形的面积=底×高,

  三角形面积=拼成的平行四边形的一半,100×33÷2=1650(cm)

  三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计12

  教材分析

  本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的。其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。

  学情分析

  学生在掌握了正方形和长方形面积的基础之上才能学好本课,让学生动手操作去探索数学的奥秘。

  教学目标

  知识与技能目标:使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

  过程与方法目标:使学生通过操作和对图形的观察、比较、发展空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  情感态度与价值观:在探索学习过程中,培养学生的实践能力、探索意识、合作精神与创新精神;同时使他们获得积极、成功的情感体验。

  教学重点和难点

  1、掌握三角形面积的计算公式,会运用公式计算三角形的面积。

  2、理解三角形面积计算公式的推导方法。

  教学过程

  一、 创设情境,导入新课

  1、 同学们,上一节课我们学习了平行四边形面积的计算你还能记住求平行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?

  2、同学们,请大家自己看看胸前的红领巾,知道红领巾是什么形状的'吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)。要想知道这条红领巾的面积时多少,就要用到三角形的面积公式,今天这节课我们就来研究三角形面积的计算方法。

  板书:三角形的面积

  二、 讲授新课

  1、上节课,我们在研究平行四边形的面积公式时,是把平行四边形转化成我们学过的方法形或正方形来研究的。今天,我们能不能将三角形也转化成我们已经学过的图形,从而推导出三角形的面积公式呢?

  2、提问:请同学们回想一下,三角形按角分类可以分为几类?分别是?

  (锐角三角形、直角三角形、钝角三角形)

  3、我为大家准备了这些三角形,请你们自己试图去拼一拼,看你能发现什么?

  4、拼图推导公式,按三角形类别的不同,可以有以下几种方法

  ⑴、两个完全一样的锐角三角形

  提问:两个完全一样的锐角三角形能拼成了什么图形?你发现了什么?

  两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形面积的2倍,因为平行四边形的面积等于底乘以高,所以三角形的面积等于底乘以高除以2。

  老师把图形贴在黑板上,再请说推导过程,并板书:

  平行四边形的面积= 底 × 高

  三角形的面积= 底 × 高÷2

  ⑵、两个完全一样的钝角三角形

  两个完全一样的钝角三角形拼成一个平行四边形

  ⑶、两个完全一样的直角三角形

  两个完全一样的直角三角形拼成一个长方形。

  5、小结:我们用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。如果用字母a表示三角形的底,h表示三角形的高,s表示三角形的面积,你能用字母表示出三角形的面积公式吗?

  板书:s=ah÷2

  三、巩固练习

  5、练习:出示教材第85页的例2,请学生独立完成,指明板演。

  6、学生独立完成教材第85页的“做一做”及第86页的练习十六的第1、2题。

  四、课堂小结

  提问:这节课我们探索了那些知识?学到了些什么?

  这节课我们主要通过用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。从而得到三角形的面积等于底乘以高除以2。 这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。

  五、思维拓展

  教材第87页第6题。

  六、布置作业

  教材第87页第3题。

三角形的面积教学设计13

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:理解三角形面积公式的推导过程.

  教学过程:

  一、激发

  1.出示平行四边形

  提问:

  (1)这是什么图形? 计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)

  师总结:平行四边形面积=底×高

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  二、指导探索

  (一)推导三角形面积计算公式。

  1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)

  分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

  2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)

  3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  4、用直角三角形推导

  (1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

  (2)拼成的这些图形中,哪几个图形的面积我们不会计算?

  (3)利用拼成的长方形和平行四边形,怎样求三角形面积?

  (4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)

  5、用锐角或者钝角三角形推导。

  (1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

  (2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

  (3)两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。

  问题:通过刚才的操作,你又发现了什么?

  引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半

  6、归纳、总结公式。

  (1)通过以上实验,同学们互相讨论一下,你发现了什么规律?

  (2)汇报结果。

  引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。

  ③这个平行四边形的底等于三角形的底。

  ④这个平行四边形的高等于三角形的高。

  7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以 2”?(强化理解推导过程)

  三角形面积=底×高÷2

  8、教学字母公式。

  引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

  (二)、应用

  1、教学例题:

  红领巾分底是 100cm,高 33厘米,它的面积是多少平方厘米?

  ①读题。理解题意。

  ②学生试做。指名板演。

  ③订正。提问:计算三角形面积为什么要“除以2”?

  2、完成做一做

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  四、反馈练习

  (一)填空

  (1)一个三角形的底是4分米,高是30厘米,面积是( )平方分米。

  (2)一个三角形的高是7分米,底是8分米,和它等底等高的'平行四边形的面积是( )平方分米。

  (3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是( )

  (4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是( )平方分米,三角形的面积是( )平方分米。

  (5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是( )米;如果平行四边形的高是10米,那么三角形的高是()米。

  (二)判断

  1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ×)

  2、等底等高的两个三角形,面积一定相等。 (√ )

  3、两个三角形一定可以拼成一个平行四边形。 ( ×)

  4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

  (5)两个面积相等的三角形可以拼成一个平行四边形。(×)

  (6)等底等高的两个三角形,面积一定相等。( √ )

  (7)三角形面积等于平行四边形面积的一半。(× )

  (8)三角形的底越长,面积就越大。(× )

  (9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√ )

  五、作业:85页做一做和练习十六第1、2、3、4题

  板书设计:

  三角形面积的计算

  因为:平行四边形的面积=底×高, 例1… …

  三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

  所以三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计14

  教材分析:

  三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。

  设计思路:

  本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。

  采取小组学习的教学形式,为学生营造一种宽松、自由的探索氛围。

  教学准备:

  1、 每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的`任意三角形3个;

  2、 量具一张,铅笔一支,剪刀一把;

  3、 视频展示台、电脑、实物投影仪。

  教学过程:

  一、揭示课题

  师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?

  我们是怎样发现这一计算公式的?

  ①学生回忆公式推导过程。

  ②电脑动画演示。

  小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的计算。

  揭示课题——三角形面积的计算

  二、探究新知

  1、学生操作

  每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。

  a、 学生动手操作;

  b、老师巡视。

  学生把自己的发现用教具贴在黑板上。

  2、汇报、交流

  师:观察这些图形,你发现了什么?

  a、 学生在小组内互相说。

  b、指名说。

  3、推导公式

  师:根据你们的发现,你能推导出三角形面积的计算公式吗?

  学生小组讨论,说说自己是怎样推导的。

  教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。

  4、小结

  刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。

  说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?

  板书:三角形的面积=底×高÷2

  =a h÷2

  附板书设计:(略)

三角形的面积教学设计15

  一、教学目标

  1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

  2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

  3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

  二、教材分析

  三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

  三、学校及学生状况分析

  我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。

  四、教学设计

  (一)由谈话导入新课

  师:我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

  师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

  师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的举手。

  师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

  [板书课题:三角形面积]

  (二)探究活动。

  师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

  师:下面我们将按小组来探究三角形面积的计算公式。

  (教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)

  (学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

  师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

  生1:我们是直接用两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式。

  生2:我们小组是用一个三角形折成长方形后推导出计算公式的。

  生3:我们是将一个三角形用割补法进行推导的。

  ……

  师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

  生:三角形的面积=底×高÷2 s=a×h÷2 (在学生叙述时,教师板书)

  师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。

  师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

  师:下面我们运用三角形的面积计算公式解决一些具体的问题。

  (巩固练习略)

  五、教学反思

  本节课是围绕着“通过学生发现三角形面积与已学图形面积的`联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

  这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

  六、案例点评

  本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

  教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

  通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

【三角形的面积教学设计】相关文章:

三角形面积教学设计04-17

三角形的面积教学设计04-02

三角形面积的教学设计01-12

《三角形的面积》教学设计02-19

《三角形面积》教学设计11-05

《三角形的面积》教学设计(必备)07-30

三角形面积的教学设计优秀02-26

三角形的面积教学设计(20篇)10-31

三角形的面积教学设计18篇05-16

三角形面积的教学设计15篇01-12