平行四边形面积教学设计

时间:2023-04-09 19:50:00 设计 我要投稿

平行四边形面积教学设计

  作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。我们该怎么去写教学设计呢?以下是小编帮大家整理的平行四边形面积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

平行四边形面积教学设计

平行四边形面积教学设计1

  教学内容:五年级上册第79-81页。

  教学目标:

  1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:掌握平行四边的面积计算公式,并能正确运用。

  教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教学方法:动手操作、小组讨论、演示等

  教学准备:每个学生一把剪刀,一个平行四边形

  教学过程:

  一、导入:

  1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽

  2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”

  二、探索新知

  1、用数方格的.方法验证:

  我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?

  2、猜测:

  谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?

  2、探究平行四边形面积公式

  不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)

  学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”

  小组讨论:平行四边形转化成长方形后,什么变了?什么没变?

  转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?

  平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)

  小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

  刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。

  3、应用:出示例1,谁来说一说你是怎么做的?

  要求平行四边形的面积,我们必须知道哪些条件?

  三、巩固练习

  四、提高练习

  五、总结

  反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。

平行四边形面积教学设计2

  1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

  2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

  3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。

  探索并掌握平行四边形的面积计算方法。

  理解平行四边形面积计算公式的推导过程。

  电子白板课件、平行四边形模型、剪刀、初步探究学习卡

  一、课前引入、渗透转化。

  1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

  2、播放制作七巧板的视频。

  3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

  二、创设情境,揭示课题。

  1、电子白板导出两个花坛,比一比,哪个大?

  2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

  三、对手操作,探究方法。

  1、利用数方格,初步探究

  2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”

  四、白板演示,验证猜想。

  1、探索把一个平行四边形转化成已学习过的图形。

  2、观察拼出的`图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

  3、平行四边形的面积=底×高

  4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

  五、巩固练习,加深理解。

  1、课件出示例1

  2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

  六、课堂小结,反思回顾。

  回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

平行四边形面积教学设计3

  教学重点:

  平行四边形面积的推导过程.

  本课采用的教法:

  自学法、转化方法、小组合作法、实验法。

  学法:

  1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景,为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的同学说:长方形面积与平行四边形面积相等(数出来的).有的.说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想

  三小组合作,培养学生的合作精神.

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.

  四例题独立完成,体现学生自己解决问题的能力.

  例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

平行四边形面积教学设计4

  [教学目标]

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点、难点]

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  [教具、学具准备]

  多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。

  [教学过程]

  一、复习旧知,导入新课。

  1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。

  2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。

  师板书:长方形的面积=长×宽

  师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。

  二、动手实践,探究发现。

  1、剪拼图形,渗透转化。

  (1)小组研究

  老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。

  (2)汇报结果

  第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。

  板节课题:平行四边形面积计算

  2、动手实践,探究发现。

  (1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?

  (2)学生重新剪拼,互相探讨。

  (3)汇报讨论结果。

  师板书:平行四边形的面积=底×高

  (4)让学生齐读:平行四边形的面积等于底乘以高。

  (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?

  (必须知道平行四边形的底和高)

  课件展示讨论题:平行四边形的底和高是否相对应。

  (6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)

  (7)比较研究方法。

  三、分层训练,理解内化。

  课件显示练习题

  第一层:基本练习

  第二层:综合练习

  第三层:扩展练习

  下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  四、课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  附说课稿:

  一、 教材与与学情分析

  《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的.面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。

  小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标:

  1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  教学重点、难点:

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  教具、学具准备:

  多媒体课件、长方形纸、剪刀、直尺、

  二、理念设计:

  1、运用信息技术手段,优化数学课堂教学。

  2、体现“数学从生活中来,再回到生活中去”。

  3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。

  三、教法、学法

  教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。

  学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

  四、教学程序

  为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。

  (一)复习旧知,导入新课。

  新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

  (二)动手实践,探究发现。

  1、剪拼图形,渗透转化。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

  教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的剪成了两个梯形),从而感知图形之间的关系,建立表象。

  2、动手实践,探究发现。

  在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。

  当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。

  (三)分层训练,理解内化。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:

  第一层:基本练习:

  计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

  第二层:综合练习:

  通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?

  学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

  2、把平行四边形模型拉近,它们的面积发生变化了吗?

  通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  (四)课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

  本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。

  当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。

平行四边形面积教学设计5

  设计说明

  在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:

  1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。

  2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。

  3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。

  课前准备

  教师准备 PPT课件 平行四边形纸片 方格纸剪刀

  学生准备 硬纸板做的平行四边形 三角尺 剪刀

  教学过程

  ⊙创设情境,提出问题

  1.出示公园里的一块长方形空地的示意图:长10米,宽6米。

  提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?

  生:10×6=60(平方米)

  师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?

  生:数方格。

  2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。

  提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?

  3.学生回答后引入新课:这节课我们就来学平行四边形的面积。

  设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。

  ⊙猜想尝试,获取新知

  1.出示教材53页问题一。

  师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?

  学生讨论,猜想求这块空地面积的方法。

  预设

  生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。

  生2:把平行四边形的相邻的两边相乘。

  过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?

  2.借助方格纸数一数,比一比。

  师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?

  (1)请大家仔细观察方格纸上的两个图形,数一数。

  (2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的.方法来求平行四边形的面积。

  (3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?

  引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。

  提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?

  设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的探究做了很好的铺垫。

  3.推导平行四边形的面积计算公式。

  师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。

  (1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?

  释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。

  (2)师生共同总结。

  ①通过剪一剪、拼一拼,把平行四边形变成了长方形。

  ②剪拼后的长方形与原来的平行四边形相比,面积不变。

  ③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。

  (3)推导平行四边形的面积计算公式。

  长方形的面积=长×宽,得出:平行四边形的面积=底×高。

  字母公式:Sah

  (4)梳理平行四边形面积计算公式的推导方法。

  师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

  (学生汇报)

  师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。

  设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。

平行四边形面积教学设计6

  【教学内容】

  义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

  【教学目标】

  1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

  2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

  3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

  【教学重点】

  平行四边形面积的推导过程、平行四边形的面积公式。

  【教学难点】

  平行四边形到长方形的转化过程。

  【教学关键】

  长方形和平行四边形的对比。

  【教学方法】

  猜想,动手操作,转化。

  【知识基础】

  长方形面积公式的推导过程、长方形的面积。

  【教具准备】

  活动的长方形边框

  【辅助手段】 

  Ppt课件

  【教学过程】

  一、情境导入,揭示课题

  1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

  (课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

  我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

  (板书课题)

  二、探究新知,操作实践

  (一)激发思维,寻求探究策略

  1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?

  方法一:数方格

  方法二:将平行四边形转化为长方形

  2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

  测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

  3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

  请同学们拿出学具,四人一小组研究研究。

  学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

  方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

  方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

  无论哪种方法,我们都是把平行四边形转化成长方形。

  4、比较归纳,推导公式

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

  提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

  学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

  这个长方形的长与平行四边形的底相等

  这个长方形的宽与平行四边形的高相等

  因为:长方形的面积=长×宽

  所以:平行四边形的面积=底×高

  学生汇报公式,教师板书。同学们在心里默默的记记。

  5、用字母表示公式

  如果用S表示平行四边形的`面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

  S=ah(学生说字母公式,师板书)

  (二)解决问题

  1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

  用公式验证前面数方格的平等四边形的面积。

  平行四边形花坛的底是6m,高是4m,

  它的面积是多少?

  学生说,师板书

  (三)实际应用

  一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

  学生自己解答。

  三、智力闯关

  这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

  (一)有空就填

  1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

  2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

  3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。

  (二)明辨是非

  1、平行四边形的面积等于长方形的面积。()

  2、平行四边形的底边越长,它的面积就越大。()

  3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()

  3、6cm

  5cm

  4、5cm

  4cm

  4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

  (三)鱼目混珠

  如图,你能计算出这个平行四边形的面积吗?

  四、课堂反思。

  1、学生谈收获。

  2、师生共同总结。

  五、拓展延伸。

  用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形面积教学设计7

  教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。

  教具学具课件、平行四边形卡片、剪刀、三角板、直尺等。

  教学模式:“我能行”四步教学法。(详见文后注)

  教学流程:

  课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?

  预设:老师的年龄是多少?教几年级?

  师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

  生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的.年龄应该是(30)岁。

  师:想得真好,许老师就是(30)岁。

  师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。

  一、情境导入,确定目标

  师:1.在数学课堂上哪些地方用到了“转化”?

  预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

  看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

  2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

  生:演示方法。

  3.师:为什么把它拼成一个长方形呢?

  预设:学过长方形面积的计算,而且能够拼成长方形。

  这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

  4.刚才的图形“转化”过程,什么变了,什么没变?

  5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

  (1)我会用“转化”的数学思想推导平行四边形的面积计算公式。

  (2)我会用平行四边形面积公式解决实际问题。

  【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

  二、互动展示,生成问题

  师:1.你猜一猜平行四边形的面积会与什么有关?

  预设:长方形、正方形、底、高、夹角、相邻的边等。

  2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

  3.请带着问题自学。(课件)

  4.四人小组交流一下你是怎样“转化”平行四边形面积的。

  【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

  三、启发思路,引导归纳

  师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

  2.平行四边形的面积怎么算?

  3.板书:平行四边形的面积=底×高

  4.你是怎样推导的?说一下你的操作过程。

  5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

  6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

  7.这个平行四边形与剪拼的长方形之间有什么关系?

  预设:平行四边形的面积与长方形的面积相等(板书)

  8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

  9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

  【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

  四、练习检测,拓展链接

  1.练习检测卡一题。

  2.课件:判断、选择题、口答列式。

  3.练习检测卡二、三题。

  4.谈谈你对这节课的收获,好吗?

  拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

  【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

  板书设计:

  (注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

平行四边形面积教学设计8

  教学目标:

  1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

  2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点和难点:

  教学重点掌握平行四边形面积计算的公式,能正确计算平行四边形的面积。

  教学难点平行四边形面积计算公式的推导过程。

  教学重难点:面积公式的推导。

  教具、学具准备:

  1. 教学课件。

  2.剪两个底40厘米,高30厘米的平行四边形,供演示用。

  3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。

  教学过程:

  一、复习

  1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?

  2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

  教师:今天我们就来学习平行四边形面积的计算方法。

  板书课题:平行四边形的面积

  二、新课

  1.用数方格的方法求平行四边形的面积。

  (l)指导学生数方格。

  (2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

  (3)比较平行四边形和长方形。

  提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?

  启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  (4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?

  2.用实验的方法推导平行四边形面积公式。

  (1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手.)

  (2)教师示范把平行四边形转化成长方形的过程。

  刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的'规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右平行移动。

  ③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合.(教师巡视指导。)

  (3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。

  (4)引导学生总结平行四边形面积的计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)

  (5)教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  教师说明:在含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成ah,代表乘号的“.”也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah。

  (6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。

  3.应用总结出的面积公式计算平行四边形的面积。

  (1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。

  (2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。

  (3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。

  三、巩固练习

  做练习十六的第1题。

  四、小结

  这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?

  五、作业;练习十六

  第2题和第3题。

平行四边形面积教学设计9

  教学目标:

  1. 探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的.空间观念,提高学生的数学素养。

  教学重点:探究平行四边形的面积计算公式。

  教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。

  教学具准备:平行四边形纸片、尺子、剪刀、课件

  教学过程

  一、谈话,揭题:

  1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

  2、揭题:平行四边形的面积。

  二、探究新知:

  问题(一)要求这个( )的面积,你认为必须知道哪些条件?

  1、 同桌交流

  2、 反馈:①长边×短边=10×7=70平方厘米

  ②底×高=10×6=60平方厘米

  3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

  4、 学生动手验证(小组合作)

  5、 请小组代表说明验证过程

  问题(二)为什么要沿着高将平行四边形剪开?

  问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

  问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

  1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

  2、 推导公式:平行四边形的面积=底×高

  3、 小结

  问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

  1、动态演示: ,引导发现周长不变,面积变大了。

  2、动态演示: ,发现面积变小了

  。

  3、要求平行四边形的面积,现在你认为必须知道哪些条件?

  问题(六)是不是所有平行四边形的面积都等于底×高呢?

  让学生拿出各自的平行四边形,动手剪拼,看看行不行。

  三、应用新知

  1. 左图平行四边形的面积=?

  2.解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?

  四、总结:

  1.回想一下今天我们是怎样学习平行四边形的面积?

  2.你还想学习哪些知识呢?

平行四边形面积教学设计10

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:理解公式并正确计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推导过程。

  教学方法:动手操作、小组讨论、启发、演示等教学方法。

  教学准备:

  1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

  2、课外延伸思考题。

  3、平行四边形转化为长方形的课件。

  教学过程

  一、创设情境,导入新课:

  1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

  2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

  师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

  二、合作交流,探究新知

  1、数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  学生讨论,鼓励学生大胆发表意见。

  3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

  学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件演示剪——平移——拼的过程。(多种方法)

  4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。可以出示讨论题。

  (1)拼出的长方形和原来的平行四边形比,面积变了没有?

  (2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  (3)能根据长方形的面积计算公式推导出平行四边形的`面积计算公式吗?

  小组汇报,教师归纳:

  我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

  同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

  板书:

  平行四边形面积= 底 × 高。

  5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

  板书:S=a×h=ah=ah

  6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  三、分层运用新知,逐步理解内化

  1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

  3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

  4、 求下列平行四边形的面积 。

  (2)判断对错:

  师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

  (3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

  生读题。

  师:等底等高的平行四边形面积一定相等。

  3. 思考题:你有几种方法求下面图形的面积?

  四、总结全课,深化认识

  通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

  今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

平行四边形面积教学设计11

  教学内容:九年义务教育六年制小学数学第九册70页一72页。

  教学目的:

  1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

  2.培养学生初步的逻辑思维能力和空间观念。

  3.结合教材渗透转化思想。

  教学重点:掌握和运用平行四边形面积计算公式。

  教学难点:平行四边形面积公式的推导过程。

  课前准备:投影器、长方形框架、平行四边形纸片等。

  教学过程:

  一、课前谈话:

  师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

  曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗?

  二、创设生活情境

  这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的判断方法吗?

  学生自由发言。

  师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)

  三、探究新知

  1、自主探索

  出示一平行四边形纸片,这是一张平行四边形的.纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!

  学生以小组为单位开展活动,教师巡视。

  汇报、反馈:都有结果了吧,哪个小组先来汇报?

  各小组派代表发言。

  2、对比分析

  每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。

  3、归纳总结

  你们真聪明,能把没有学过的知识转化成学过的知识,现在这个长方形的面积怎样求?它的长和宽与原来平行四边形的什么有关?

  想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求平行四边形的面积了吧?谁来说一说?

  四、巩固运用

  咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!

  1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

  2、P82看第2题。

  3、课件出示:P83第题,这两个平行四边形的面积相等吗?为什么?

  五、小结:今天大家学得开心吗?你们都有哪些收获?

  出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么

平行四边形面积教学设计12

  教学内容分析:

  平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。

  设计的理念:

  学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

  教学目标:

  1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。

  3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。

  教学重点:

  使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。

  教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。

  教学过程:

  一、创设情境、导入新课。

  多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。

  师:观察图中学校门口前的'两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  生:会计算长方形面积,不会计算平行四边形的面积。

  师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)

  [设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]

  二、探究平行四边形的面积。

  1.用数方格的方法探索计算面积。

  师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?

  生1:我想把平行四边形拉成一个长方形。

  生2:我想用数方格子的方法来计算。

  ……

  师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。

  (2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。

  说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。

  同桌合作完成:

  4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?

  平行四边形

  底

  高

  面积

  长方形

  长

  宽

  面积

  通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  [设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]

  2.推导平行四边形面积计算公式。

  (1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?

  生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。

  师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?

  学生讨论,鼓励学生大胆发表意见。

  (2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。

  (3)分组合作动手操作,探索图形的转化。

  各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。

  生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。

  引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。

  用多媒体演示平移和拼的过程。剪——平移——拼。

  [设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]

  (4)小组讨论,合作交流,探索平行四边形的面积计算公式。

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论后,根据学生回答情况出示讨论题目给学生。

  拼出的长方形和原来的平行四边形相比,面积变了没有?

  拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

  [设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]

  (5)小组交流汇报,归纳叙述出自己的推导过程。

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?

  因为:长方形的面积=长×宽,

  所以:平行四边形的面积=底×高

  如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah

  学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)

  3、平行四边形面积计算公式的应用。

  既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。

  (1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?

  生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。

  (2)运用平行四边形面积计算公式让学生自学例1。

  师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。

  学生板书例1的结果;s=ah=6×4=24(平方米)

  [设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]

  三、巩固拓展。

  1、给下面各题目填空。

  (1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。

  (2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。

  (3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。

  [设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]

  2、你能想办法求出下面两个平行四边形的面积吗?

  3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。

  [设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]

  四、课堂总结

  通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。

  请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?

  板书设计:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  用字母表示是:S=a×h=a·h=ah

平行四边形面积教学设计13

  教学目标:

  1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。

  3、培养学生的合作意识和探究精神。

  教学重点:

  理解公式并会计算平行四边形的面积。

  教学难点:

  推导平行四边形的面积计算公式。

  教具准备:

  每人准备一个平行四边形纸片和一把剪刀,多媒体课件。

  教学过程:

  一、导入(媒体出示:)

  1、认识图形。

  2、口算长方形的面积。

  3、回顾平行四边形的特征。

  4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积

  二、自主学习

  1、学生用数方格的方法数一数,并把结果记载到80页的表格中。

  2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的.数据显示:长方形的长和宽分别和平行四边形的底和高相等。)

  3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的方法把平行四边形转化成别的图形)

  4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。

  5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)

  板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  6、学习用字母表示公式:我们用S表示平行四边形的面积,a表示它的底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)

  7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)

  教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。

  三、巩固提高

  1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。

  2、作业:练习十五第1题,第2题。

  3、拓展:(媒体展示)

  (1)下面哪个平行四边形的面积大呢?为什么?

  (2)一个长方形拉成一个平行四边形后,有哪些变化?

  四、课堂小结

  本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?

平行四边形面积教学设计14

  教学目标:

  1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。

  2、通过操作、分析讨论等活动,培养学生

  动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。

  3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。

  4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

  教学重点:

使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。

  教学难点:

能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。

  教学过程:

  一、情景引入

  1、联系实际选择建房用地。

  (1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?

  (2)联系刚才的选择地的情况,让学生比较两块地的大小情况。

  让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?

  (3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……

  二、探究新知

  1、面积计算公式的推导:

  引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?

  (1)讲解相关的要求。明确小组研究要求。

  (2)操作验证。巡视,个别指导。

  (3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。

  问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)

  (4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。

  引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)

  教师逐步点击交互,得出:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  (5)用字母表示面积计算公式。

  (6)小结。(明确转化的方法。)

  2、面积计算公式的应用:

  (1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。

  讨论后,给出底和高,进行计算。

  (2)计算长方形面积,再次通过计算的方法说明两块地面积相等。

  (3)试一试:计算平行四边形的面积。

  3、教学小结。进行推导:

  (1)明确研究的要求。

  (2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)

  (3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。

  (4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。

  (5)了解认识、明确:S=a×h,S=a·h或者S=ah。

  (6)进行小结。

  4、初步运用公式。

  (1)教学试一试,(2)练一练。

  三、巩固应用

  1、练习二“第1题”。

  先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。

  2、练习二“第2题”。

  可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。

  3、练习二“第3题”。

  这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。

  4、练习二“第5题”。

  让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。

  四、课堂总结

  今天学习了什么?你有什么收获?(让学生自由发挥。)

  教学反思:

  上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

  (一)创设生活情境,激发探究欲望

  小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

  (二)重视学生的自主探索和合作学习

  动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的.是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

  在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。

  (三)培养学生的问题意识

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。

平行四边形面积教学设计15

  【教学目标】

  1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。

  2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  【教学重点、难点】

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。

  【教具、学具准备】

  多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。

  【教学过程】

  一、创设情境,抽取方法、导入新课

  1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)

  师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。

  学生思考、回答:

  (1)数格子的方法。

  (2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。

  动画演示割补的过程。

  师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?

  既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。

  二、应用方法,动手操作,探究新知

  1、预设问题:

  师:我们来看下面的问题:

  实验小学有一个花坛,想要计算出它的面积,怎么计算呢?

  师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:

  怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1) 出示问题:

  师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ① 平行四边形可以转化成学过的哪种图形?

  ② 平行四边形的底和高分别与转化后的图形有什么关系?

  ③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的'图形来计算面积?

  (3) 小组探究。

  (4) 组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。

  2、探究公式:

  (1) 出示问题:

  师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。

  友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:

  ① 平行四边形可以转化成学过的哪种图形?

  ② 平行四边形的底和高分别与转化后的图形有什么关系?

  ③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?

  (学生在独立思考的基础上进行合作探究)

  (2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?

  (3) 小组探究。

  (4) 组间展示交流:

  师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)

  师:谁还有不同的剪法?

  动画展示割补——转化的过程:

  (其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)

  (4)师生交流提炼,形成板书:

  师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:

  师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)

  3、教学例1:

  师:有了这个成果,我们会解决前面的问题了吗?

  出示例1:下图平行四边形花坛的面积是多少?

  学生回答,教师板书:S=ah=6×4=24(cm2)

  3、巩固小结:

  通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。

  三、分层训练,巩固内化

  1、求下面的平行四边形的面积,只列式不计算:

  (第三个图形计算中提问:用12×9.6行不行?强调底与高的对应)

  2、慧眼识对错:

  (1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )

  (2) 平行四边形的底越长,面积就越大。( )

  (3) 下面平行四边形的面积是:8×5=40(平方厘米)( )

  ,人教新课标五上《平行四边形的面积》教案2

  (4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )

  3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:

  师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)

  我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)

  学生测量、计算、展示。

  师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。

  4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?

  四、课堂小结:

  师:这节课你有什么有收获?

  师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。

【平行四边形面积教学设计】相关文章:

平行四边形的面积教学设计01-12

平行四边形的面积教学设计03-03

平行四边形的面积公式教学设计12-08

人教版平行四边形的面积教学设计12-08

平行四边形的面积教学设计15篇03-03

面积的教学设计03-14

人教版平行四边形的面积教学设计8篇03-03

平行四边形的面积教学设计(通用3篇)07-29

《什么是面积》教学设计04-01

圆的面积教学设计06-02