三角形内角和教学设计

时间:2024-10-26 20:14:12 设计 我要投稿

三角形内角和教学设计集合15篇

  作为一位杰出的教职工,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么问题来了,教学设计应该怎么写?下面是小编整理的三角形内角和教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形内角和教学设计集合15篇

三角形内角和教学设计1

  设计思路

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的.度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教材分析

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

  因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  多媒体课件、学具。

  教学过程

  一、激趣引入

  (一)认识三角形内角

  师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  生1:三角形是由三条线段围成的图形。

  生2:三角形有三个角,……

  师:请看屏幕(课件演示三条线段围成三角形的过程)。

  师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:只能画长方形。

  师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

  生:想。

  师:那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

  生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

  师:也就是这个三角形各角的度数。它们的和怎样?

  生:是180°。

  师:你是怎样知道的?

  生:90°+60°+30°=180°。

  师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

  师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  生:90°+45°+45°=180°。

  师:从刚才两个三角形内角和的计算中,你发现什么?

  生1:这两个三角形的内角和都是180°。

  生2:这两个三角形都是直角三角形,并且是特殊的三角形。

  (二)研究一般三角形内角和

  1、猜一猜。

  师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、验证一般三角形内角和是180°。

  (1)小组合作、进行探究。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

  师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

  (2)小组汇报结果。

  师:请各小组汇报探究结果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)继续探究

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?

  生:把它们剪下来放在一起。

  1、用拼合的方法验证。

  师:很好,请用不同的三角形来验证。

  师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

  2、汇报验证结果。

  师:先验证锐角三角形,我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  3、课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

三角形内角和教学设计2

  一、教学目标

  1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

  2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

  3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

  二、教学过程

  (一)创设情境,导入新课

  1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

  (学生畅所欲言。)

  2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

  师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,

  3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、认识什么是三角形的内角和。

  师:你知道什么是三角形的内角和吗?

  通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

  2、探究三角形内角和的特点。

  ①让学生想一想、说一说怎样才能知道三角形的内角和?

  学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)

  ②小组合作。

  通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

  引导学生推测出三角形的内角和可能都是180°。

  3、验证推测。

  让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

  (小组合作验证,教师参与其中。)

  4、全班交流,共同发现规律。

  当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

  学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

  5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  (三)巩固练习,拓展应用

  根据发现的三角形的新知识来解决问题。

  1、完成“试一试”

  让学生独立完成后,集体交流。

  2、游戏:选度数,组三角形。

  请选出三个角的度数来组成一个三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

  3、“想想做做”第1题

  生独立完成,集体订正,并说说解题方法。

  4、“想想做做”第2题

  提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

  5、“想想做做”第3题

  生动手折折看,填空。

  提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

  6、“想想做做”第5题

  生独立完成,说说不同的解题方法。

  7、“想想做做”第6题

  学生说说自己的想法。

  8、思考题

  教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

  出四边形的内角和公式吗?

  (四)课堂总结

  本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

  三教后反思:

  “三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

  (一)创设情景,激发兴趣

  俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

  (二)给学生空间,让他们自主探究

  “给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的.三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

  (三)以学定教,注重教学的有效性

  新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

  在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。<

三角形内角和教学设计3

  微课作品介绍本微课是苏教版小学数学四年级下册《三角形内角和》的课前先学指导,学生在家观看视频内容,同时结合学习任务单,在视频的指导下通过猜、量、算、剪、拼等方法探索三角形的内角和是180度。学生在课前利用视频完成学习任务单,然后到学校课堂中和老师、同学进行交流,再进一步提升。

  教学需求分析适用对象分析该微课的适用对象是苏教版四年级下学期的小学生,学生应认识三角形的基本特征,学习过角和角的度量,知道平角是180度。具备了一定的动手操作能力和数学思维能力。

  学习内容分析该微课让学生发现、验证三角形的内角和是180度的结论。这部分内容是在学生认识了三角形的基本特征和三边的关系后,三角形分类前学习的。这在苏教版中和原来的教材不同,放在这里是因为三角形内角和是学生进一步学习和探究三角形分类方法的重要前提。学生知道了三角形的内角和是180度,对三角形分类及命名的方法,才能知其然,还能知其所以然。

  教学目标分析:

  1、通过学生的实际操作,理解并验证三角形的内角和等于180°,并能够运用结论解决简单的实际问题;

  2、使学生通过观察、实验,经历猜想与验证三角形内角和的探索过程,在活动中发展学生的空间观念和推理能力。

  3、已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在学习时的主要目标是验证三角形的内角和是180度。

  教学过程设计本微课教学过程:

  一、明确多边形的内角、内角和概念。

  首先要明确概念,才好继续研究。内角、内角和以前学生没有学过,还是有必要给学生明确的。

  二、探索三角尺的内角和,猜想三角形的内角和。

  从学生熟悉的三角板开始计算三角板的内角和,引发学生猜想,三角形的内角和是多少。

  三、验证三角形内角和是否为180°。

  验证分为三个层次:首先是量教材提供的三角形,算出内角和,可能会有误差。其次把三角形三个内角拼在一起,拼成是平角180度。最后自己任意画一个三角形剪下来,拼一拼,得出结论。让学生经历由特殊到一般的认知过程。

  四、拓展延伸,探究梯形、平行四边形和六边形内角和。

  由三角形的内角和,学生自然就会想到已学过的梯形、平行四边形和六边形内角和是多少呢。教师留下问题让学有余力的.学生进一步去探索。

  五、自主学习检测

  学生观看完了视频是否学会了,是需要检测的。学生通过做完自主检测后进行校对,检验自己所学。

  学习指导本微视频应配合下面的学习任务单共同使用,在观看视频时,根据视频提示随时暂停视频依次完成任务单。

  自主学习前准备:

  请在自主学习前阅读学习任务单的学习指南,并准备好数学书、一副三角尺、量角器、剪刀、铅笔等学习用具。

  自主学习任务单:

  通过观看教学资源自学,完成下列学习任务:

  任务一:明确多边形的内角、内角和概念

  1、你认识下面的图形吗?他们各有几个角,请在图中标出来。

  2、你刚才标出的角,又叫做每个图形的()。

  3、如果把一个图形所有的内角的度数加起来,所得的总和就是这个图形的()。

  4、你知道图中长方形和正方形的内角和是多少度吗?你是怎么知道的?

  长方形内角和正方形内角和

  任务二:探索三角尺的内角和,猜想三角形的内角和。

  1、请拿出一副三角尺,你知道每块三角尺上各个角的度数?在图上标出来。

  2、算一算,每个三角尺3个内角的和是多少度。

  3、根据你刚才的计算结果,你能猜想一下,任意一个三角形它的内角和的度数呢?

  任务三:验证任意三角形内角和是否为180°

  1、请从数学书本第113页剪下3个三角形,用量角器量出每个三角形3个内角的度数。

  算一算,每个三角形3个内角的和是多少度。

  2还可以用什么办法来验证剪下的这3个三角形的内角和等于180度?(把你的验证方法展示在下面。)如果你想不出来请看下面的提示。

  温馨提示:平角正好是180°,这三个内角能正好拼成一个平角吗?

  3、自己任意画一个三角形,先剪下来,再拼一拼。

  4、你发现了什么?写在下面。

  5、请你回顾一下我们研究三角形形内角和是180度的过程?简单的写下来。

  任务四:拓展延伸

  任务一中还有梯形、平行四边形和六边形,如果你有兴趣,你可以研究他们的内角和。

  任务五:自主学习检测

  1、右边三角形中,∠1=75°,∠2=40°,∠3=()°

  2、第3个三角形还可以怎样计算,哪种更简便?

  3、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是多少度?

  4、用一张长方形纸折一折,填一填

  配套学习资料苏教版小学数学四年级下册教材

  制作技术介绍Camtasia Studio软件制作、PPT。

三角形内角和教学设计4

  教学目标:

  1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  3、经历三角形内角和的研究方法,感受数学研究方法。

  教学重点:

  1、探索和发现三角形三个内角的度数和等于180°。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

  教学用具:表格、课件。

  学具准备:各种三角形、剪刀、量角器。

  一、创设情境揭示课题。

  1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

  生1:大三角形大(个子大)

  生2:小三角形大(有钝角)

  (教师不做判断,让学生带着问题进入新课)

  2、什么是三角形的内角和?(板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题:

  1、你认为谁说得对?你是怎么想的?

  2、你有什么办法可以比较一下这两个三角形的内角和呢?

  生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

  生3:用折一折的办法把三个角折到一起看它们能不能组成平角

  (二)探索与发现

  活动一:量一量

  (1)①了解活动要求:(屏幕显示)

  A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

  B、把测量结果记录在表格中,并计算三角形内角和。

  C、讨论:从刚才的测量和计算结果中,你发现了什么?

  (引导生回顾活动要求)

  ②小组合作。

  ③汇报交流。

  你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

  (引导学生发现每个三角形的三个内角和都在180°,左右。)

  (2)提出猜想

  刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

  活动二:拼一拼,验证猜想

  这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

  引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

  (2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  (3)分组汇报,讨论质疑

  (4)课件演示,验证结果

  活动三:折一折

  师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

  (把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

  讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

  提问:还有没有其它的方法?

  3、回顾两种方法,归纳总结,得出结论。

  (1)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?”

  学生答:“180°!”

  (2)总结方法,齐读结论

  我们通过动作操作,折一折,拼一拼,把三角形的'三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  (3)解释测量误差

  为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

  (三)回顾问题:

  现在你知道这两个三角形谁说得对了吗?(都不对!)

  为什么?请大家一起,自信肯定的告诉我。

  生:因为三角形内角和等于1800180°。(齐读)

  三、巩固深化,加深理解。

  1、试一试:数学书28页第3题

  ∠A=180°-90°-30°

  2、练一练:数学书29页第一题(生独立解决)

  ∠A=180°-75°-28°

  3、小法官:数学书29页第二题

  四、回顾课堂,渗透数学方法。

  1、总结:猜想—验证—归纳—应用的数学方法。

  2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

  3、课堂延伸活动:探索——多边形内角和

  板书设计:

  探索与发现(一)

  三角形内角和等于180°

三角形内角和教学设计5

  教学目标:

  1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。

  2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。

  3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。

  教学重点:

  知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。

  教学难点:

  经历操作活动,推理、归纳出三角形的内角和。

  教学资源:

  多煤体课件,各种三角形,三角板,量角器,剪刀。

  教学活动:

  一、创设情境,导入新课。

  1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的'特征怎么分类?

  2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。

  3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)

  二、合件交流,操作发现。

  1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。

  2.组织学生小组合作:

  请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?

  3.组织学生汇报交流:

  ①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)

  4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。

  5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)

  三、实践应用,拓展延伸。

  1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。

  2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。

  四、反思总结,自我建构。

  这节课你有什么收获?

  这节课我们就研究到这儿,同学们再见!

三角形内角和教学设计6

  教学内容

  人教版小学数学第八册第五单元第85页例5

  任务分析

  教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

  学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

  教学目标

  1、通过实验、操作、推理归纳出三角形内角和是180°。

  2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

  3、通过拼摆,感受数学的转化思想。

  教学重点

  探究发现和验证“三角形的内角和180度”。

  教学难点

  验证三角形的内角和是180度。

  教学准备

  多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

  教学过程

  一、复习旧知,学习铺垫

  1、一个平角是多少度?等于几个直角?

  2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解规律

  1、说明三角形的三个内角和

  说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

  师(指出):三角形的这三个角叫做三角形的.三个内角,这三个内角的度数和叫做三角形的内角和。

  板书课题:“三角形的内角和”。

  揭示课题:今天我们一起来探究三角形的内角和有什么规律。

  2、探究三角形的内角和规律

  探究1:量一量,算一算

  以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

  生讨论汇报,并引导学生发现:三角形的内角和接近180°。

  师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

  学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

  探究2:摆一摆,拼一拼

  引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

  生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

  如图:

  (1)

  锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

  (2)

  让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

  (3)

  让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

  引导学生归纳:三角形的内角和是180°。

  是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

  板书:三角形的内角和是180°

  三、巩固练习,应用规律

  1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

  学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

  学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

  (180°-80°)÷2

  =100°÷2

  =50°

  四、拓展练习,深化规律

  1、求出下面各角的度数。

  (1) (2)

  2、判断

  (1)三角形任意两个内角的和大于第三个角。( )

  (2)锐角三角形任意两个内角的和大于直角。( )

  (3)有一个角是60°的等腰三角形不一定是等边三角形。( )

  3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

  ( ) ( )

  五、课堂小结,分享提升

  1、谈谈这节课你有什么收获?

  2、课后思考题

  三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

  板书设计

三角形内角和教学设计7

  一、说教材

  北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。

  二、说目标

  1.知识目标:掌握“三角形内角和定理的证明”及其简单的应用。

  2.能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。

  3.情感、态度、价值观:

  在良好的师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。

  4.教学重点、难点

  重点:三角形的内角和定理的证明及其简单应用。

  难点:三角形的内角和定理的证明方法的讨论。

  三、说学校及学生现实情况

  我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。

  四、说教法

  根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。

  五、说教学设计

  〈一〉、创设情景,直入主题

  一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。

  〈二〉、交流对话,引导探索

  1、巧妙提问,合理引导

  证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的'思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。

  2、恰当示范,培养学生正确的书写能力

  在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。

  3、一题多解,放手让学生走进自主学习空间

  正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。

  4、展示归纳,合理演绎

  利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。

  5、反馈练习

  用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。

  〈三〉、课堂小结

  1 采用让学生感性的谈认识,谈收获。设计问题:

  2(1)、本节课我们学了什么知识?

  (2)、你有什么收获?

  目的是发挥学生主体意识,培养其语言概括能力。

  六、说教学反思

  本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。

三角形内角和教学设计8

  教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

  教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

  教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

  教学目标:

  1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

  2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

  3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

  教学重点:理解并掌握三角形的内角和是180°。

  教学难点:验证所有三角形的内角之和都是180°。

  教具准备:多媒体课件、各种三角形等。

  学具准备:三角形、剪刀、量角器等。

  教学过程:

  一、出示课题,复习旧知

  1、认识三角形的内角。

  (1)复习三角形的概念。

  (2)介绍三角形的“内角”。

  2、理解三角形的内角“和”。

  【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

  二、动手操作,探究新知

  1、通过预习,认识结论,提出疑问

  2、验证三角形的内角和

  (1)用“量一量、算一算”的方法进行验证

  ①汇报测量结果

  ②产生疑问:为什么结果不统一?

  ③解决疑问:因为存在测量误差。

  (2)用“剪一剪、拼一拼”的方法进行验证

  ①指导剪法。

  ①分别拼:锐角三角形、直角三角形、钝角三角形。

  ③验证得出:三角形的内角和是180°。

  (3)用“折一折”的方法进行验证

  ①指导折法。

  ①分别折:锐角三角形、直角三角形、钝角三角形。

  ③再次验证得出:三角形的内角和是180°。

  3、看书质疑

  【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

  三、实践应用,解决问题:

  1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  2、求出三角形各个角的度数。(图略)

  3、爸爸给小红买了一个等腰三角形的`风筝。它的一个底角是

  70°,它的顶角是多少度?

  4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

  5、数学游戏。

  【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

  四、总结全课、延伸知识:

  1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

  2、知识延伸:给学生介绍一种更科学的验证方法——转化。

  【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

  板书设计: 三角形的内角和是180°

  方法:

  ①量一量 拼角(略)

  ②拼一拼

  ③折一折

  【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

三角形内角和教学设计9

  教学目标:

  1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

  2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

  3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

  教学重点:

  探索发现三角形内角和等于180并能应用。

  教学难点:

  三角形内角和是180的探索和验证。

  教学过程:

  一、创设情境,提出问题

  师:大家喜欢猜谜语吗?

  生:喜欢。

  师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

  (打一几何图形))

  生:三角形。

  师:三角形中都有哪些学问?

  生:三角形有三条边,三个角,具有稳定性。

  生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

  生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

  生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

  生:三角形的内有和是180。

  生:(一脸疑惑)

  师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

  生:每个三角形的内角和都是180吗?

  (根据学生的问题,在三角形的内角和是180后面加上一个?)

  二、自主探索,实践验证

  1、理解内角 师:什么是内角?

  生:我认为三角形的内角就是指三角形的三个角。

  师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

  2、理解内角和。

  师:那三角形的内角和又是指什么?

  生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

  师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

  3、实践验证

  师:每个三角形的内角和都是180吗?用什么方法来验证呢?

  生:量一量每个角的度数,然后加起来看看是不是180。

  师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

  师:谁愿意把你的劳动成果和大家分享一下?

  生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

  师:这位同学量的`是一个锐角三角形,并且是比较特殊的三角形等边三角形。

  生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

  师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

  生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

  师:你发现了什么?

  生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

  师:看来三角形的内角和不一定是180。

  生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

  生:都接近180就能说一定是180吗?

  师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

  (学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

  师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

  生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

  师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?

  生:我们小组也有折的直角三角形,钝角三角形。

  (其它的成员展示不同的三角形)

  师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

  师:哪个小组和他们的方法不一样?

  生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

  师:这个小组的方法简便,易操作,很好。

  生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

  4、小结

  师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?

  生:没有。

  师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

  三、巩固应用,加深理解

  1、说一说每个三角形的内角和是多少度

  师:(出示一个大三角形)这个大三角形的内角和是多少度?

  生: 180

  师:(出示一个小三角形)这个小三角形的内角和是多少度?

  生:180

  师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

  生:180

  师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?

  生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

  师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

  生:180

  2、求下面各角的度数

  师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

  (出)

  生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三个三角形中,用180-20-45,B=115。

  3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

  生:等腰三角形的两个底角相等,所以用180-70-70 4、

  师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

  在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?

  生:用量角器量一量

  师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

  生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56

  师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

  四、回顾总结,拓展延伸

  师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

  生:我知道了三角形的内角和是180。

  生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

  生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

  生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

  师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

  师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

  生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

  生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

  师:我们学习知识,必须知其然并知其所以然。

  师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

三角形内角和教学设计10

  【教材内容】:

  北师大版四年级数学下册

  【教学目标】:

  1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  【教学重点和难点】:

  重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

  【教材分析】

  《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

  【教学过程】

  一、创设情境,激发兴趣。

  出示课件,提出两个两个疑问:

  1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

  2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的'焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?

  二、初建模型,实际验证自己的猜想

  在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

  三角形的形状

  三角形每个内角的度数

  内角和

  锐角三角形

  钝角三角形

  直角三角形

  等腰三角形

  等边三角形

  三、再建模型,彻底的得出正确的结论

  因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

  四、应用新知,巩固练习

  1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)

  2、试一试,在直角三角形中已知其中的一个角求另一个角的度数

  3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

  4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?

  五、拓展与延伸

  通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

三角形内角和教学设计11

  设计思路

  本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

  学具:三角形

  教学过程

  一、引入

  (一)认识三角形的内角及三角形的内角和

  师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

  师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

  师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:……

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究三角形内角和

  (一)猜一猜。

  师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  (二)操作、验证三角形内角和是180°。

  1、量一量三角形的内角

  动手量一量自己手中的三角形的内角度数。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?

  学生汇报结果。

  师:请汇报自己测量的结果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的内角

  学生操作

  师:没有得到统一的.结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?(学生操作)

  生:把它们剪下来放在一起。

  师:很好。

  汇报验证结果。

  师:通过拼合我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

  3、折一折三角形的内角

  师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

  如果学生说不出来,教师便提示或示范。

  学生操作

  4、小结:三角形的内角和是180°。

  三、解决疑问。

  师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

  师:在一个三角形中,有没有可能有两个钝角呢?

  生:不可能。

  师:为什么?

  生:因为两个锐角和已经超过了180°。

  师:那有没有可能有两个锐角呢?

  生:有,在一个三角形中最少有两个内角是锐角。

  四、应用三角形的内角和解决问题。

  1、下面说法是否正确。

  钝角三角形的内角和一定大于锐角三角形的内角和。()

  在直角三角形中,两个锐角的和等于90度。()

  在钝角三角形中两个锐角的和大于90度。()

  ④一个三角形中不可能有两个钝角。()

  ⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

  2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  3、游戏巩固。

  由一个同学出题,其它同学回答。

  (1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

  (2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

  4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

  五、全课总结。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

  反思:

  在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180°。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。

三角形内角和教学设计12

  教学内容:

  义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.

  教学目标:

  1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备:

  多媒体课件、学具。

  教学过程:

  一、激趣引入

  (一)认识三角形内角

  1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)

  2.请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

  (二)设疑,激发学生探究新知的心理

  1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  学生安要求画三角形.

  2.问:有谁画出来啦?

  (课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)

  学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)

  这个三角形各角的度数。它们的和是多少?

  学生回答:是180°。

  追问:你是怎样知道的?

  生:90°+45°+45°=180°。

  把三角形三个内角的度数合起来就叫三角形的内角和。

  板题:三角形内角和

  2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  90°+60°+30°=180°。

  3.从刚才两个三角形内角和的计算中,你发现什么?

  这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。

  (二)研究一般三角形内角和

  1.猜一猜。

  猜一猜其它三角形的.内角和是多少度呢?同桌互相说说自己的看法。

  2.操作、验证一般三角形内角和是180°。

  (1)小组合作、进行探究。

  1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!

  2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示

  组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.

  量一量,完成表格.

  三角形的名称

  内角和的度数

  锐角三角形

  直角三角形

  (2)小组汇报结果。

  请各小组汇报探究结果。

  (三)继续探究

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  1.用拼合的方法验证。

  小组内完成,活动的要求同上.

  拼一拼,完成表格.

  三角形的名称

  是否可以拼成平角

  锐角三角形

  直角三角形

  对角三角形

  2.汇报验证结果。

  先验证锐角三角形,我们得出什么结论?

  (锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  直角三角形的内角和也是180°。

  钝角三角形的内角和还是180°)。

  3.课件演示验证结果。

  请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  我们可以得出一个怎样的结论?

  (三角形的内角和是180°。)

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  为什么用测量计算的方法不能得到统一的结果呢?

  (量的不准。有的量角器有误差。)

  三、解决疑问。

  现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

  在一个三角形中,有没有可能有两个钝角呢?

  (不可能。)

  追问:为什么?

  (因为两个锐角和已经超过了180°。)

  问:那有没有可能有两个锐角呢?

  (有,在一个三角形中最少有两个内角是锐角。)

  四、应用三角形的内角和解决问题。

  1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  2.85页做一做:

  在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.

  3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)

  4.89页16题.思考题

  板书设计:

  三角形内角和

  180°180°180°

  三角形内角和180°

三角形内角和教学设计13

  【教材分析】

  《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

  【学生分析】

  经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

  1、知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。

  2、能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

  【学习目标】

  知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

  能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

  情感目标: 让学生体会几何图形内在的结构美。

  【教学过程】

  一、 情景激趣,质疑猜想。

  播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

  钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

  师:想一想,什么是三角形的三个内角的和。

  生:三角形的三个内角的度数和。

  师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

  学生进行猜想,自由发言。

  (设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

  二、自主探究,验证猜想

  师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?

  生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

  生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

  生3:我把三角形的三个角撕下来,拼一拼是否180°。

  生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

  ……

  师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

  学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

  (设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

  三、交流评价,归纳结论。

  学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

  实验报告单

  实验名称

  三角形内角和

  实验目的'

  探究三角形内角和是多少度。

  实验材料

  尺子

  剪刀

  量角器

  锐角三角形纸片

  直角三角形纸片

  钝角三角形纸片

  我的方法

  我的发现

  我的表现

  自评

  互评

  学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

  师生共同归纳,得出结论:

  三角形内角和等于180°

  (设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

  四、分层练习,巩固创新。

  ①课件出示:

  师:这个三角形是什么三角形?知道几个内角的度数?

  生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

  师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

  学生做完后反馈讲评时让学生说说自己的方法。

  生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。

  ②学生完成完成P29的第一题。

  引导学生按照前面的方法独立完成,教师巡视,集体订正。

  ③猜一猜三角形的另外两个角可能各是多少度。

  同桌同学互相说一说。(答案不唯一)

  ④小组操作探究活动。

  让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

  方 法

  四边形内角和

  用量角器量出每个内角的度数,并相加。

  把四边形四个角剪下来,拼在一起。

  把四边形分为两个三角形。

  填表后让学生想一想、互相说一说,四边形内角和是多少度?

  (设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

三角形内角和教学设计14

  【教材分析】:

  新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

  【教学目标】

  知识与技能

  1.理解和掌握三角形的内角和是180度。

  2.运用三角形的内角和的知识解决实际问题。

  过程与方法

  经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

  情感态度与价值观

  在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

  【教学重点】

  重点:理解和掌握三角形的内角和是180度。

  突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

  【教学难点】

  用三角形的内角和解决实际问题。

  突破方法:推理分析计算。运用推理,正确计算。

  教法:质疑

  【教学方法】

  引导,演示讲解。

  学法:实践操作,小组合作。

  【教学准备】:

  多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

  【教学时间】

  一课时

  【教学过程】

  一.创设情境,引入新课

  师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?

  生:三类,分别为锐角三角形,直角三角形,钝角三角形。

  师:嗯,真好,那么对边的分类呢?

  生:俩类,分别为等腰三角形,等边三角形。

  师:老师想让同学们帮老师画一个三角形,能做到吗?

  生:能。

  师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

  师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

  生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

  师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?

  生:想。

  师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

  (设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)

  二.探究新知

  师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。

  生1:锐角三角形。

  生2:直角三角形。

  生3:钝角三角形。

  师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?

  生:里面的三个角,可以用角1,角2,角3来表示。

  师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?

  生:三角形的内角和是180度。

  师:那么我们能不能一起用一些好的`办法来验证一下呢?

  生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

  师:还有其他的办法吗?

  生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

  生3:我可以用折的方法,把三个角的度数折在一起。

  师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

  (设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

  三.总结任意三角形的内角和是180度并做适当练习。

  四.板书设计

  三角形的内角和

  量一量锐角三角形:75度+48度+58度=181度

  直角三角形:90度+45度+45度=180度

  钝角三角形:120度+38度+22度=180度

  拼一拼图形呈现

  折一折图形呈现

三角形内角和教学设计15

  知识与技能

  1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

  2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

  情感态度与价值观

  3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

  教学重点:

  1、探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  教学难点:

  已知三角形的两个角的度数,会求出第三个角的'度数。

  方法与过程

  教法:主动探究法、实验操作法。

  学法:小组合作交流法

  教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

  教学课时:1课时

  教学过程

  一、预习检查

  说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。

  二、情景导入呈现目标

  故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

  三、探究新知 

  自主学习

  1、活动一、比一比2、活动二、量一量

  (1)什么是内角?

  (2)如何得到一个三角形的内角和?

  (3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。

  (4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

  3、说一说,做一做。

  (1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

  (2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。

  四、当堂训练(小黑板出示内容)

  1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

  2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

  3、三角形具有()性。

  4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

  5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

  6、交流学案第三题。 先独立做,最后组内交流。

  五、点拨升华

  任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

  六、课堂总结

  通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

  七、拓展提高

  妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。

  板书设计:

  三角形的内角和

  测量三个角的度数求和:结论:

  教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

  当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

【三角形内角和教学设计】相关文章:

三角形内角和教学设计02-13

《三角形的内角和》教学设计05-08

《三角形内角和》教学设计05-03

《三角形内角和》教学设计范文03-01

《三角形内角和》的教学设计范文02-07

三角形内角和教学设计(优)12-26

(必备)三角形内角和教学设计12-18

三角形内角和教学设计范文04-13

《三角形内角和》教学设计15篇05-08

《三角形内角和》教学设计(15篇)05-14