《圆环的面积》教学设计

时间:2023-05-07 10:20:11 设计 我要投稿
  • 相关推荐

《圆环的面积》教学设计

  作为一名默默奉献的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么什么样的教学设计才是好的呢?下面是小编为大家整理的《圆环的面积》教学设计,欢迎阅读,希望大家能够喜欢。

《圆环的面积》教学设计

《圆环的面积》教学设计1

  教学内容:

  圆环的面积计算,简单组合图形面积的计算。

  教学目标

  1、使学生认识以圆环,掌握圆环的特征,掌握计算圆环面积的方法。

  2、培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。

  3、会计算组合图形的面积,能根据各种图形的特征和条件,有效地选择计算方法。

  教学重、难点

  1、掌握计算圆环面积的方法。

  2、掌握求简单组合图形面积的方法。

  教学方法:

  例证法、类比法、迁移法。

  教学过程:

  一、复习引入

  1、圆面积的计算公式

  2、计算圆的面积

  r=5厘米d=6米C=15.7分米

  二、探索新知

  1、出示实物,认识圆环

  出示光盘。提问:谁能用语言描述这个光盘?

  2、实践操作,感知圆环

  (1)刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?

  学生用一张白纸剪一个圆环。

  (2)学生操作,动手剪环形。(教师巡视指导,帮助学有困难的学生)

  (3)说出剪圆环的过程。

  让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的面积。

  3、探究环形面积的计算方法。

  (1)小组讨论:如何计算圆环的面积?

  (2)反馈讨论结果。

  学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。

  思考:要计算环形的.面积需要什么条件?

  通过师生交流后,明确要计算环形的面积需要知道外圆(大圆)的半径或直径和内圆(小圆)的半径或直径。

  4、应用新知,解决问题。

  (1)出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?

  (2)读题,理解题意。

  (3)分析数量关系。

  (4)尝试解答。

  (5)反馈解答情况。

  方法1:大圆的面积—小圆的面积。

  方法2:大圆半径的平方与小圆半径的平方差乘以3.14。

  观察比较这两种解法,有什么不同?

  师生交流,引导学生发现:通过乘法分配律,这两种方法可以相互转化,其实它们是一致的。

  小结:圆环面积的计算方法,大圆的面积—小圆的面积=圆环的面积。

  学生尝试用字母表示求圆环面积的计算公式。

《圆环的面积》教学设计2

  教学内容:

  圆环的面积计算。第68页例2。

  教学目标:

  1.使学生认识圆环,掌握圆环的特征,掌握计算圆环的面积方法。

  2.培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。

  3.激发学生学习的兴趣。

  教学重点:

  掌握圆环面积的计算方法。

  教学难点:

  理解环形的形成过程,形成圆环的空间观念。

  教学准备:

  多媒体课件,剪刀,有关环形制品。

  教学过程:

  一、情境导入

  1、用课件出示几个生活中的圆环。

  2、请学生列举生活中的圆环。

  师:在生活中圆环很多,这节课我们就来研究有关圆环的知识。

  板书课题:圆环的面积

  二、课前检测

  1、出示检测题,学生独立完成,教师巡视了解学生情况。

  2.学生汇报。

  3、师在屏幕上演示,加深圆环的空间观念。

  在大圆里画一个同心的小圆,用剪刀沿着小圆的周长把小圆剪掉,剩下的图形就是一个圆环。

  3、圆环各部分的名称。课件出示。

  二:探究新知

  1、出示例2

  2、小组探究圆环面积的计算方法。

  学习要求:

  (1)讨论如何计算圆环的`面积:

  圆环的面积=()-()

  (2)列式计算。

  (3)探究圆环面积的字母公式。

  S圆环=()-()

  3、学生小组合作探究,师巡视,个别指导。

  4、学生汇报结果,师公布正确答案。

  5、追问:还有没有其它的计算方法。

  S圆环=∏(R2-r2)

  三、分层练习

  1、通过刚才的探究同学们想一想,要算圆环的面积必须要知道哪些条件?(大小圆的半径)

  2、学生齐读:S=∏R2-∏r2或S=∏(R2-r2)

  3、同学们掌握圆环面积的计算方法了吗?现在我要检验大家是不是真的掌握了,基础训练题。(课件出示练习题)

  (1)生看题独立解决,师巡视辅导。

  (2)生汇报。

  4、变式训练1(课件出示练习题)

  (1)先让学生思考:半圆环面积和圆环面积有什么关系?(是圆环面积的一半)所以只要先把什么面积求出来?在怎样就可以求出半圆环面积?

  (2)生独立解答,师个别指导。

  (3)生汇报交流。

  5、变式训练2

  (1)出示练习题。

  (2)生独立解答,师个别指导。

  (3)生汇报交流。

  师追问:如果不知道大园、小圆的半径怎么求圆环的面积?(先求出大圆、小圆的半径再用公式。)

  三、总结:通过本节课的学习,你有什么收获?

  四、作业:练习十五第5----7题。

《圆环的面积》教学设计3

  设计说明

  本节课是在学生学习了圆的面积的基础上进行教学的,主要教学圆环的面积及应用。在教学设计上重点关注以下几个方面:

  1.重视情境的引入,突出主题。

  捷克教育家夸美纽斯曾说:“一切知识都是从感官开始的。”它反映了教学过程中学生认识规律的一个重要方面:直观可以使抽象的知识具体化、形象化,有助于学生感性认识的形成,并促进理性认识的发展。认识圆环是圆的面积知识的综合运用,在上课伊始,引导学生欣赏生活中常见的圆环状的物体图片,使学生对圆环有感性的认识,从直观上感知圆环的特征,为后面学习圆环的面积奠定了坚实的基础。

  2.重视操作感受。

  小学生学习数学是与具体实践活动分不开的,重视动手操作是发展学生思维,培养数学能力和实践能力最有效的途径。因此,本设计引导学生在动手操作中剪出圆环,使学生不但对圆环有鲜明的认识,而且能深刻地理解圆环面积与内、外圆面积之间的`关系,进而使学生顺利推导出圆环的面积公式。

  课前准备

  教师准备PPT课件、圆规、光盘

  学生准备剪刀、直尺、圆规、每人一张硬纸板

  教学过程

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的环形甬路,奥运五环标志,光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的乐趣?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来学习有关圆环的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习圆环的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形的特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

  (学生按照要求画圆)

《圆环的面积》教学设计4

  教学目标:

  1、认识圆环的特征,掌握圆环面积的计算方法,合理地进行计算。

  2、培养和发展学生的逻辑推理和概括的能力,运用所学的知识解决简单的实际问题。

  教学重点:圆环面积公式的推导。

  教学难点:圆环面积公式的应用。

  教具准备:光盘。

  教学过程:

  一、复习。

  1、口算:

  32 42 52 82 92 202

  2π 3π6π 10π 7π 5π

  2、思考:

  (1)圆的周长和面积分别怎样计算?二者有何区别?

  (2)求圆的'面积需要知道什么条件?

  三、新课。

  1、教学环形面积。

  (1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

  已知:R=6厘米 r=2厘米 求: s=?

  3.14×62 3.14×22

  =3.14×36 =3.14×4

  =113.04(平方厘米) =12.56(平方厘米)

  113.04-12.56=100.48 (平方厘米)

  第二种解法:3.14×(62-22)=100.48(平方厘米)

  (2)小结:环形的面积计算公式:

  S=πR2-πr2 或 S=π×(R2-r2)

  2、完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  三、巩固练习。

  1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

  选择正确算式

  A、(18.84÷3.14÷2)2×3.14

  B、(18.84÷3.14)2×3.14

  C、18.842×3.14

  2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

  3、课堂小结。

  (1)这节课的学习内容是什么?

  (2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

  已知半径求面积 S=πr2

  已知直径求面积 S=π()2

  已知周长求面积 S=π()2

  (3)环形面积: S=π(R2-r2)

  四、总结

  这节课我们学习了什么内容?谈谈你有什么收获?

  五、作业

  课本P70第4、6、7题。