比的基本性质教学设计
在教学工作者实际的教学活动中,常常需要准备教学设计,借助教学设计可以更好地组织教学活动。如何把教学设计做到重点突出呢?以下是小编为大家整理的比的基本性质教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
比的基本性质教学设计1
教材分析
《比的基本性质》属于数学概念教学。它是在学生学习了商不变的性质、分数的基本性质及理解比的意义,能正确求比值的基础上进行教学的。它既是对前面所学知识的巩固应用,也为学生今后学习比例打下坚实的基础。本节课的知识目标是:使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。能力目标是:通过学习,培养学生的迁移类推能力和抽象概括能力。情感态度价值观目标:教学中,鼓励学生在教师创设的情境中主动地建构概念,应用概念,从而培养学生的探究意识,在活动中体验成功的快乐。本课的教学重点是理解比的的基本性质,教学难点是应用比的基本性质化简比。
学情分析
学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的.关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。
教学目标
1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。
2、培养学生的抽象概括能力。
3、渗透转化的数学思想。
教学重点和难点
教学重点:理解比的基本性质,掌握化简比的方法。
教学难点:掌握化简比的方法。
教学过程
教学过程
活动一
1、出示例1,出示例1,让学生解答。
2、教学比例的基本性质
(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)
①根据分数、比、除法的关系验证。
②根据比值验证。
......
③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。
④总结比的基本性质,为什么强调0除外呢?
活动二
1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?
比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)
2、根据你自己的理解,能说一说什么是最简单的整数比吗?
(前项和后项是互质数。)
3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。
让学生试做后,总结方法。
4、出示例1(2)①1/6:2/9②0.75:2
学生先讨论方法,再试做。
5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。
6、化简比与求比值有什么不同?
7、质疑
活动三
1、做一做46页化简比。
2、48页第4题
教学反思
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!
注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。
“兴趣是的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。
比的基本性质教学设计2
教学内容:
苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。
预设目标:
1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。
2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。
教学重点:
探索、发现、归纳和理解分数的基本性质。
教学过程:
一、导入
猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。
二、学习新知
1、提供例证
(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?
板书:1/3=2/6=3/9(得出三个相等的分数)
(2)学生折纸找与1/2相等的分数。
你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16
2、诱导探索
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?
3、探究新知
(1)独立思考或小组交流。
(2)探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
4、揭示结论:出示分数的基本性质的内容,并揭示课题。
5、深究结论:
(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?
(2)齐读并理解记忆分数的基本性质。
三、多层练习
1、填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判断。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、课堂作业:
1、第62页“练一练”2。
2、第63页第3题。
3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?
反思
“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的`思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,
从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。
3、让学生在多层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
比的基本性质教学设计3
教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义和性质。
教学难点:应用比例的意义和性质判断两个比能否组成比例。
教学准备:多媒体课件一套。
教学过程:
一、渗透情感,导入新课
1、媒体出示国旗画面,学生观察,激发爱国情操。
天安门升国旗仪式
校园升旗仪式
教室场景
签约仪式
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
二、认识比例,发现特征
1、引出比例,理解比例的意义。
媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。
并板书:2.4∶1.6 =3/2
60∶40=3/2
师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6 =60∶40
2、认识比例,知道比例各项的名称。
⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。
⑵学生尝试说说什么叫比例。
⑶教学比例的各部分的名称。
自学课本第34页的第一段话,初步认识比例各项的名称。
出示其中一个比例,指出比例各部分的名称。
学生说说自己写的比例的各项的名称。
⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。
⑸判断下列几个比能不能组成比例。
媒体出示,学生判断并说出理由。
下面哪组中的两个比可以组成比例,把组成的比例写出来。
⑴6∶10和9∶15 ⑵20∶5和1∶4
⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4
⑹思考:比和比例有什么联系和区别?
学生自主思考,集体交流,了解比例和比的联系和区别。
3、自主练习,发现比例的基本性质。
⑴媒体出示
8∶4=()∶() 15:10=()∶4 12∶()=()∶5
媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?
⑵师提出问题:在一个比例中,它们项有什么特点?
⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。
⑷集体交流,发现性质。
学生自主交流,发现:在比例里,两个外项的`积等于两个内项的积。
⑸观察自己写的其它几个比例,验证发现。
⑹小结性质
学生尝试用完整的数学语言说一说自己的发现。
媒体出示学生的发现,教师指出这就是比例的基本性质。
三、巩固练习,提高认识
1、基本练习
判断,媒体出示
应用比例的基本性质,判断下面哪组中的两个比可以组成比例
⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50
⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5
2、拓展练习。
比一比,谁写得多。
在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。
四、总结全课,升华认识
学生回顾全课,说说比例的意义和基本性质。
板书设计:
比例的意义和基本性质
2.4∶1.6 =3/2
60∶40=3/2
比的基本性质教学设计4
教学内容:苏教版五年级上册p34——35例5、例6,“试一试”、“练一练”,练习六1——5题。
教学目标:
1、理解并掌握小数的性质;
2、能运用小数的性质进行小数的化简和改写;
3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。
教材的重点:通过探索,发现小数的性质,运用小数的性质解决相关问题。
教学难点:对小数的性质这一概念的理解是本节的难点。 教学过程:
一、导入新课
在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。
二、学习新知
1、研究小数的性质
(1)(板书“1”)师:在“1”的末尾依次添上1个“0”、2个“0”,数的大小变化了吗?怎么变?你能不能在括号里填上合适的单位名称,使下面的等式成立。
1( )=10( )=100( )
得出:1元=10角=100分
1米=10分米=100厘米
1分米=10厘米=100毫米
出示米尺,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)
板书:因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
师:0.1、0.10、0.100是否相等?为什么?
(板书:0.1=0.10=0.100)
a、从左往右看,是什么情况?(小数的末尾添上“0”,小数大小不变)
b、从右往左看,是什么情况?(小数的末尾去掉“0”,小数大小不变)
c、由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数大小不变)
(2)出示:0.3元、0.30元师:这两个数相等吗?说出理由。(学生交流,教师适时适当地引导)
(3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.30、0.3,比较其大小,说明30个1/100就是3个1/10,0.30=0.3
(4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢?相等吗?为什么?
(5)0.3添上“0”成0.03,大小有没有变化?为什么?
(6)引导学生归纳出小数的性质。
2、小数性质的应用
师:根据这个性质,遇到小数末尾有“0”的时候,一般可以去掉末尾的.“0”,把小数化简。
(1)化简小数
出示例6:提问:价格表上的哪些“0”可以去掉?
提问:这样做的根据是什么?弄清题意后,学生回答,教师板书:2.80=2.8 4.00=4 10.50=10.5
(2)把整数或小数改写成指定数位的小数
师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。
如:2.5元=2.50元 3元=3.00元
(3)做“试一试”
0.4=0.400 3.16=3.160 10=10.000
练习:口答“练一练”第2题。
讨论小结:改写小数时一定要注意下面三点:
a、不改变原数的大小;
b、只能在小数的末尾添上“0”;
c、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)
三、巩固练习
练一练
第1题:学生先独立做,再校对,说说为什么。
第2题:先涂色,再比较。根据小数的意义说一说。
练习六
第1题:口答,说说为什么。
第2题:把相等的数用线连起来,先在书
上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
第3题(左边4题):化简下面小数,采取抢答来完成。
第4题(左边4题):先独立做再口答订正。
第5题:用元作单位,把下面的钱数改写成两位小数。2人板演,其余学生齐练,评价鼓励。
四、课堂作业
练习六3和4(右边4题)
教学反思:
在教学时,我首先通过联系学生的生活实际,让学生感知商品的价格,引入新课揭示并板书课题。教学例题时,我没有直接出示例6而是先在黑板上写了三个1。提问:这三个1中间可以用什么符号连接?创设这样一个问题情境,让学生回答。接着,我在第二个1后面添上一个“0”成10,在第三个1后面添上两个“0”成100。问:现在这三个数还能用等号连接吗?(不能)师:你能想办法使他们相等吗?这问题情境的创设立即引起了学生们的好奇。这个富有启发性、趣味性、挑战性的问题吸引着学生,引起了他们强烈的探索欲望,使他们情不自禁地注入自己的热情成为学习的主人。他们注意力迅速高度集中,纷纷开动脑筋、个个跃跃欲试。通过大家的回答和教师的评判不知不觉引入新课的学习,自然流畅。这样设计有利于引导学生根据小数的意义出发研究新问题是小数意义的运用。接着通过观察米尺,引导学生得出0.1=0.10=0.100。让学生从左往右看,是什么情况?再从右往左看,是什么情况?发现了什么规律?引导学生找出规律:小数的末尾添上“0”或去掉“0”时,小数的大小不变。接着让学生用手中的学具验证:0.3=0.30,再次理解并掌握小数的性质。
这节课,以学生找规律、验证规律、应用规律,环节清晰。但是正如所有的课一样有优点也有缺点,反思下来我觉得本节课中教师还是讲得多了一些,因此留给学生巩固练习时间少了一些。因此,在今后的教学中,要体现以学生为主体,让学生充分发表自己的意见,大胆地说出自己的想法。
比的基本性质教学设计5
教学内容:人教版五年级数学下册57页内容及58、59页练习。
教学目标:
知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。
过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。
情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质。
教学难点:应用分数的基本性质解决问题。
教学准备:预习生成单、作业纸、课件
教学课时:一课时
教学过程:
一、导入新课,揭示课题
1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)
2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。
3、指名学生汇报。
4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。
二、检查预习,自主探究
1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)
2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的'成果?)
3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,
4.师:其他同学还有补充吗?你们得出这个结论了吗?
三、合作交流,探究新知
1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。
2.出示合作要求(课件),指名学生读一读。
3.学生合作交流,探究学习。
4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?
5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?
6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)
8.再读一读,说说这句话中哪个词比较关键。
9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。
9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。
四、应用拓展,新知内化
1.出示例2,指名读题,理解题意。
2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)
3.学生独立在练习本上完成,指名板演,集体订正。
4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。
五、当堂检测
(一)、下面每组中的两个分数是否相等?相等的在括号里画“√”,不相等的画“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分数化成分母是10而大小不变的分数。
===
(四)、涂色表示出与给定分数相等的分数。
(五)、如果一堂课40分钟,哪个班做练习用的时间长?
六、课堂小结:通过这节课的学习,你学会了什么?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这节课最多的考虑就是分数的基本性质这个规律怎样才能让学生真正的夯实,怎样设计才能让学生水到渠成的加深了理解。在练习的设计和过渡语的设计都是关键。
比的基本性质教学设计6
教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
重点难点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。
教具学具: 课件,每人一张白纸,一张圆纸片,彩笔
教学时间:1课时
教学流程:
一、复习引入
1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
除法与分数之间有什么联系?
被除数÷ 除数=被除数/除数
教师板书:分数的基本性质
二、动手操作
(1)用分数表示涂色部分。
( )
( ) )
( ) )
①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。
②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)
③继续折成16份,看看原来的3/4现在又成了?(12/16)
(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!
(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分数表示涂色部分。
( ) )
( ) )
( ) )
根据上面的过程,你能得到一组相等的分数吗?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、发现规律
1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成上面的图形,再在小组内交流。
学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。
3/4=6/8=12/16 8/12=4/6=2/3
从这些数字中可以得出:
分数的分子和分母同时乘或者除以相同的`数,分数的大小不变。(相同的数,这个数能不能是0 ?)
教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?
得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。
3、课件出一组分数让学生练习填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、练一练(课件出示)
1、判断.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )
( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )
3、数学游戏(课件出示)
说出相等的分数 1/4和2/8
(1)你能根据分数的基本性质,再写出一组相等的分数?
所写的分数是否相等?你是怎样想的?
(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
五、课本练习中的第1,2题。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
七、板书设计:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
比的基本性质教学设计7
教学目标:
1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。
3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。
教学重难点:
教学重点:理解比例的意义和基本性质。
教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:
师生问好!
师:课前我们先进行一组口算练习,下面请##同学上台主持。
一、求比值
3 : 8= 2 : 6= 4 : 4= 9 : 3= 8 : 24=
5 : 20= 8.8 : 1.1= 16 : 96=
二、化简比
4 : 5= 2 : 20=
32 : 4= 4 : 44=
15 : 25= 10 : 80=
师:看来同学们口算的都比较准确,昨天我们共同交流了学习目标,大家进行了自主学习,下面请同学们在小组内对学自主学习中的知识链接部分
(小组活动)
师:知识链接的内容是上学期我们学过的有关“比”的知识,今天我们要学的知识,也和“比”有密切的联系,看大屏幕,在山东半岛的东南端有一座啤酒飘香的城市青岛,而青岛啤酒更是闻名中外,这节课我们就一起探究啤酒生产中的数学,这是一辆货车,正在运输啤酒的主要生产原料——大麦芽,这是它2天的运输情况,根据这个表格,你能发现哪些数学信息?
(学生回答)
师:这位同学发现的数学信息真全面,那你能根据这些数学信息提出有关“比”的数学问题吗?
(学生回答)
师:同学们真了不起,提出了这么多问题!
学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。
(小组活动)
师:哪个小组的同学愿意来汇报自主学习的内容?
生汇报:我来汇报……其他小组有什么评价或补充吗?
师评价
师:看来同学们学的不错,表示两个比相等的式子叫做比例,根据比例的定义我们知道比需要满足两个条件就可以组成比例:两个比这两个比的比值相等,例如16 :2 = 32 :4,师:2:1与谁能组成比例?
(生答)
师:我真为你们感到骄傲,想到了这么多不同的答案!
组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
说出老师指的这个数是比例的外项还是比例的内项?
(师指生齐说)
师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成
师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?
师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。
师:看来同学们学的真不错,其实,在比例的2个外项和2个内项之中隐藏着1个秘密,下面,请同学们以16 :2 = 32 :4为例,研究一下,试试能不能发现这个秘密,为了研究方便,老师给你提供3个温馨提示
(指1生读温馨提示)
(生合作探究)
师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。
(生汇报展示)
师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。
师:下面我们就用比例的基本性质解决拓展应用
生
师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?
(生谈收获)
师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》
师:下面我们进行达标检测
(生完成后)
师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。
(小组汇报)
师:全对的同学请举手,组员全对的奖励一颗小印章。
师:同学们这节课表现得真棒,继续努力,好,下课!
教后反思:
《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。 备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:
一、找准知识衔接点,为新知做好铺垫
比例的`意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。
二、相信学生利用导学案自学的能力,大胆放手。
课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。
三、从情境图入手,丰富资源
从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。
四、自主探索、合作交流、探究新知。
在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。
五、练习由易到难
每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12 : ( ) = ( ) : 5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。
根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。
每一次的课,总会有一些优点,但也发现了自己的一些不足:
一、采用多种评价方式
二、研究教材、挖掘教材、如何准确地处理和把握教材的能力还有待提高。
只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。
比的基本性质教学设计8
【教学内容】:
【教学目标】:
1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。
【教学重点】:经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。
【教学难点】:理解和掌握分数的基本性质。
【教学方法】:
本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。
【学法指导】:
为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
【教学准备】:
1、媒体准备:白板
2、资源准备:PPT
【资源运用】:
1、导入——课件出示问题-——唤醒旧知
2、探究新知——PPT课件——突破重点、分解难点
3、拓展延伸
【教学过程】:
一、联系旧知,质疑引思。
1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?
2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?
3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?
谁能说一个与《分数的基本性质》教学设计
【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】
二、自主操作,验证猜想
1、初步验证
(1)提出问题
谁能说一个与《分数的基本性质》教学设计
如果让你证明他们确实和《分数的基本性质》教学设计
(2)汇报方法
2、深入验证:
(1)在纸上写上一组你认为可能相等的分数;
(2)用你喜欢的方法来证明。
(3)学生操作。
(4)汇报交流。
3、概括性质,深化理解
(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?
(2)归纳概括,总结规律,揭示课题。
(3)根据我们以前学过的分数与除法的关系,以及整数除法中商不变的性质,来说明分数的`基本性质吗?
4、运用规律,完成例2。
(1)理解题意
(2)要把他们化成分母是12而大小不变的分数,分子应该怎么变化?变化的根据是什么?
(3)独立完成,交流汇报
【给学生提供开放的探究空间,满足学生的探索欲望。】
三、知识应用,巩固提升
1、判断
(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。
(2)两个分数的分子、分母都不相同,这两个分数一定不相等。
(3)《分数的基本性质》教学设计
2、五年级有《分数的基本性质》教学设计
3、把《分数的基本性质》教学设计
才能使分数的大小不变?
四、回顾总结,完善认知
通过本节课的学习,你有什么收获?
【教学反思】:
1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。
2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。
3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。
比的基本性质教学设计9
一、教学目标
1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3.情感态度价值观目标:通过教学,使学生养成与人合作的意识,并能与他人互相交流思维的过程和结果。
二、教学重难点
重点:理解比的基本性质,掌握化简比的方法。
难点:理解化简比与求比值的不同。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是比的基本性质,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
同学们,你们都喜欢看名侦探柯南吗?这一天柯南又破案了,我们一起来看一看:
某珠宝店发生了一起失窃案。小偷在现场只留了一个脚印,柯南根据脚印的长为25cm,就果断推断出了小偷的身高是175cm。
你们想知道他是如何推断出来的吗?原来根据科学的验证,人的脚长比人的身高等于1:7,你们知道柯南到底运用了怎样的数学知识来破获此案的呢?
想不想成为像柯南一样的小神探老师,相信通过这节课的学习你们能了解其中的奥秘,这节课就让我们一起走进数学王国,去探究比的意义。
【新授】
活动一:
上节课我们一起认识了比,谁来向大家分享一下比到底代表着怎样的意义呢?请你来说,对学过的知识掌握的非常扎实,请坐。两个数的比表示两个数相除。那我们一起来看一看这个6:8就等于对,6÷8等于6/8,能够约分等于3/4,所以比值是3/4。我们带来看一看12 : 16等于12÷16,所以比值是12 / 16约分3/4。
我们一起看一看,这两个比它们之间有什么区别和联系呢?请你来说观察的非常细致,它们的比值相等,谁还有别的发现,请你来说。真是一个爱动脑筋的好孩子,请坐。6:8,前项和后项都乘2,就变成了12 : 16。
同学们还记得我们之前学过的商不变的规律吗?谁来说一说。请你来说。说的非常准确,请坐,被除数和除数同时乘或除以一个不为零的数,商不变。那我们比如6÷8被除数和除数同时乘2,也就是6x2÷括号里面的`8x2等于12÷16。同样的,我们的被除数和除数同时除以2,也就是6÷8,等于(6÷2)÷(8÷2)=3÷4
活动二:
那我们比中是否有类似的规律呢?我们一起来探究一下请同学们以四人为一组思考并注意以下几个问题,根据比与除法之间的关系,以及除法商不变的规律,来思考6:8与12 : 16之间有怎样的关系?二6:8与3:4之间又有什么关系呢?你还有什么发现?带着这几个问题,先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来自于老师,看哪个小组的发现又多又好。开始。
老师看同学们都已经做的很端正了。哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,1#3同学请你来说。思路非常清晰,请坐。
利用比和除法的关系来研究6÷8写成比的形式,就是6:8。而(6x2)÷(8x2)写成比的形式就是按括号里面的6×2:括号里面的8x2。又因为我们两个数的比表示两个数相除,而它们之间是相等的关系,除法算式是相等的关系,所以比值也相等,我们用等号来连接。接下来继续,12÷16写成比的形式就是12 : 16。同样他们除法算式是相等的关系,由此得到它们之间的比值也是相等的,所以用等号来连接。
其他小组还有不同的发现吗?二组同学请你来说。说的非常有条理,请坐。6÷8写成比的形式,就是6:8而6÷2,除以括号里面的8÷2,写成比的形式就是括号里面的6÷2,比括号里面的8÷2。又因为这两个除法算式结果相同,也就是啊,它们的比值是相等的,所以用等号来连接。最后3÷4用比的形式就是按3:4,同样比值相等,我们继续用等号来连接。
我们一起仔细观察一下我们刚刚的探索的过程,你有哪些发现?又能得到怎样的结论呢?谁来试一试?请你来说多么了不起的发现,同学们掌声送给这位同学。
比的前项和后项同时乘或除以一个相同的数,比值不变。那同学们想一想,这个相同的书能为零吗?对呀,当然不能为零,因为在除法算式中,除数不能为零。同学们可真棒,这么快就探索出了比的这么重要的规律。其实这就是我们这节课所要学习的内容,比的基本性质。
活动三:
刚刚我们是根据比和除法之间的关系探索比的基本性质,你能根据比和分数的关系研究比中的规律吗?
同桌之间相互合作,来试一试。老师看同学们都已经探索完了,那你们对比的基本性质理解的怎么样啦?在生活中我们根据比的基本性质,可以将比化成最简的整数比,前项和后项只有公因数1是最简单的整数比。
观察一下黑板上这些内容,以上就是本节课所要学习的比的基本性质。
【巩固练习】
接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕。
神舟五号搭载了两面联合国国旗。你也是啊,长15cm,宽十厘米,另一面长180cm,宽120cm。那这两面联合国国旗长和宽的最简整数比分别是多少呢?同学们赶紧来算一算。老师看,同学们都已经完成了,谁来说一说你是如何计算的?
请你来说思路非常清晰,请坐,长与宽的比就是15 :10。因为15和十的最大公约数是五,所以前项和后项同时除以五,等于3:2,这就是它们的最简整数比。而180 : 120,两个数之间的对大姑约说啥60,所以前项和后项同时除以60。也得到了最简整数比是3:2。
看来这么简单的问题已经难不倒大家了,我们再来看一看1/6:2/9,求它的兑奖比谁来说一说你的思路。
请你来说。说的非常清晰,请多因为分母六和九的最小公倍数是18,所以同时两边前项和后项同时乘18。得到最简比是3:4。
那0.75 :2呢?谁来说一说你的想法?请你来说小脑袋可真聪明,请坐。先将0.75化为整数,小数点儿,向右移动两位乘100,所以前项和后项同时乘100,变成75 : 200。
然后再将它们化简为最简单的整数比。也就是说,当一个比的前项和后项不是整数时,我们要先将它化为整数,再化为最简的整数比。看来同学们对这节课的知识掌握的非常扎实了。
【课堂小结】
不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?
班长你手举得最高你来说,他说啊通过本节课学习了比的基本性质,也就是比的前项和后项同时乘或除以一个相同的数,比值不变,0除外。看来啊本节课上特听讲非常认真,请坐!同学们在本节课上听讲非常认真,表现得都非常积极,老师给大家点一个大大的赞,希望同学们继续保持!
【作业布置】
那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识测量一下书桌的长宽,看一看他们的比值是多少。下节课一起来交流讨论一下。
本节课就先上到这,下课,同学们再见!
尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!
比的基本性质教学设计10
教学目标:
情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。
知识技能:理解分数的基本性质,并且能够灵活应用。
过程方法:动手操作、观察、讨论
教学重、难点:理解并掌握分数的基本性质并灵活应用。
教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。
学具准备:拼图12组。
教学设计理念:
《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。
教学过程:
一、 创设情境,激趣导入。
设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。
师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。
请看拼图要求:1、用所给材料拼成三个完全一样图形。
2、用分数表示阴影部分占整幅图的几分之几,并写出来。
二、合作交流,探究规律。
设计意图:让学生在具体的情境中充分利用现有资源,增强学生的.学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。
(一)拼图,写分数。
(1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。
(2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )
(二)找分数间的大小关系。
(1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。
(2)汇报:每组中三个分数大小相等。
比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……
(三)探究规律
(1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。
(2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……
(3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。
(4)师结合图依据分数的意义讲解变化规律。
(5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?
(四)对比分数的基本性质和商不变的性质。
学生对比,说出两个性质间的区别与联系。
三、应用。
设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。
1、填空
(1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。
2、比较 和 的大小。
四、游戏"找朋友”。
设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。
同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。
,五年级数学分数的基本性质教学设计
比的基本性质教学设计11
教具准备:
天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。[
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的`变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:
(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:
(1)等式两边都加上或减去相同的数,等式保持不变;
(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四:小结。
有什么收获?还有什么问题?
教学内容:数学书P55-56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
比的基本性质教学设计12
教材分析
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的'基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。
教学目标
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点和难点
教学重点:理解比的基本性质。
教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。
比的基本性质教学设计13
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
引导观察,自主探究发现比例的基本性质
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学过程:
一、从知识的矛盾冲突中导入并引入。
3:8=9:( ) 0.5:( )=5:17
制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)
师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)
你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)
二、探索发现新知。
1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)
学生回报,师完成板书:
(注意板书的时候教师的手势要指明确到位)
2、练习:请指出下列比例的两个外项和内项各是多少?
80:2=200:5
6:10=9:15
1/2:1/3=6:4
0.2:2.5=4:50
2.4:1.6=60:40
3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。
带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。
4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)
回到板书例题验证:两个外项的积是:3×24=72
两个内项的积是:8×9=72
5、拿出自己任意找的.5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。
6、完成板书:在比例里,两个外项的积等于两个内项的积
如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。
三、基本练习。
1、应用比例的基本性质,判断下面两个比是否能组成比例。
(1)6:3和8:5
(2)1∶5和0.8∶4
(3)1/3:1/4和12∶9
(4)1.2:3/和4/5:5
(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)
2、在括号里填上适当的数
(1)12:3=( ):5
(2)( ):1/3=1/4:1/6
(3)0.2:0.6=6:( )
(4)4:3=80:( )
3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?
4、把5、3、4、8这四个数换掉其中的一个,组成比例。
5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。
6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。
四、全课总结:
谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)
比的基本性质教学设计14
1.教材简析
《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、
6、在游戏活动中对数学知识进行拓展运用。
教学目标
1.知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
教学重点
理解分数的基本性质
教学难点
能运用分数的'基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学准备
师:电脑课件 学生:圆纸片 长方形纸
教学步骤:
一、故事引人,揭示课题。
1.教师讲故事。
话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”
唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?
[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2、组织讨论,动手操作。
(1)小组讨论,谁分的多
(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。
(3)比较涂色部分的大小,有什么发现,得出什么结论。
既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(4)教师演示
3、教学例1
(1)引导比较。
师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
你知道其中哪些分数是相等的吗?
根据学生回答板书:1/3=2/6=3/9
师追问:你是怎么知道这三个分数相等的?(图中观察出来的)
(2)师演示验证大小。
(3)完成“练一练”第1题
学生先涂色表示已知分数,再在右图中涂出相等部分。
完成填空后,说说怎么想的。
4、教学例2。
(1)组织操作。
师:取出正方形纸,先对折,用涂色部分表示它的1/2。
学生完成折纸、涂色。
师问:你能通过继续对折,找出和1/2相等的其它分数吗?
学生在小组中操作,教师巡视指导。
学生展开折法并汇报,可能出现的方法有:
连续对折两次,平均分成4份。如图:
1/2=1/4
②连续对折三次,平均分成8份。如图:
1/2=4/8
③连续对折四次,平均分成16份。
师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?
得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
板书:1/2=2/4=4/8=8/16=16/32……
(2)发现规律。
师:你有什么发现?(如学生观察有困难,可进行以下提示)
①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?
学生观察、思考,在小组中交流。
师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?
比的基本性质教学设计15
学习目标:
1、理解并掌握比的基本性质。
2、能应用比的基本性质化简比。
教学重点:
比的基本性质,化简比的方法。
教学难点:
化简比与求比值的区别。
教学过程:
一、激情导课
1、复习导入
上节课我们学习了比,说说你对比的理解?怎样求比值?
你还记得除法有什么性质?分数又有什么性质吗?
除法有商不变的性质,分数有分数的.基本性质,联系比和除法、分数的关系,同学们猜想一下在比中是否也有类似的性质呢?
2、学习目标:
(1)理解比的基本性质。
(2)会运用比的基本性质化简比。
二、民主导学
1、探究比的基本性质
温馨提示:
自学书上50页的内容,可以利用比和除法的关系来研究,也可以根据比和分数的关系来研究。
(1)小组合作学习。
(2)全班汇报交流。
(3)总结归纳:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
(4)根据商不变性质,我们可以进行除法的简算。根据分数的基本性质,我们可以把分数化成最简单的整数比,即化简比。
理解最简单的整数比的意义。
①举例:4:6=2:3
前项、后项同时除以2,前、后项必须是整数,而且互质
符合最简单的整数比要符合两个条件:一是比的前项,后项必须是整数,二是这两个整数必须是互质数,也就是这两个整数只有公约数1。
②判断:下面哪些比是最简比
6:92:94:22 7:13
2、探究化简比的方法。
出示例题:
(1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。
①学生尝试完成,师巡视指导,要求写出化简过程。
②师生共同讲评:教师板书过程。问:化简比的结果是什么?
让学生明确还是一个比。
(2)把下面各比化成最简单的整数比。
0.75:2
观察0.75:2这个比,并与例1比较,有什么不同之处,怎样把小数转化成整数,比值不变?
引导学生可以乘整十整百的数,变成整数。学生独立完成。
除此之外还有没有其他的方法?
可以把0.75转化成分数,:2怎样化简呢?
引导学生想办法去掉分母,前项和后项可以同时乘4。
最后出示:,想一想怎样化简?
总结归纳:①化简比的方法
②不管选择哪种方法,最后的结果都是一个最简单的整数比,而不是一个数。
三、检测导结
1、化简下列各比。
15:210
12:0.4
3(2):2(1)
1:3(2)
2、判断:下面说法对吗?
(1)0.48∶0.6化简后是0.8。()
(2)4(3):2(1)化简后是12(1)。()
(3)0.4∶1化简后是2:5。()
3、连线:帮小蜗牛找家
4、写出各杯子中糖与水的质量比。
这几杯糖水有一样甜的吗?
四、反思总结:
这节课我们学习了什么知识?
和同学们分享一下你的收获吧。
板书设计:
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
求比值:结果是一个数
化简比:结果是一个比
【比的基本性质教学设计】相关文章:
《比例的基本性质》教学设计05-22
分数的基本性质教学设计04-05
分数基本性质教学设计02-15
《比例的基本性质》教学设计05-04
《分数的基本性质》教学设计12-04
《比例的基本性质》教学设计【推荐】03-19
《比例的基本性质》教学设计15篇05-04
不等式基本性质教学设计12-29
分数的基本性质教学设计15篇04-05