圆柱的体积教学设计

时间:2024-09-13 18:51:24 设计 我要投稿

圆柱的体积教学设计(15篇)

  在教学工作者开展教学活动前,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么应当如何写教学设计呢?下面是小编整理的圆柱的体积教学设计,仅供参考,大家一起来看看吧。

圆柱的体积教学设计(15篇)

圆柱的体积教学设计1

  教材简析:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  教 具:圆柱的体积公式演示教具,多媒体课件

  教学过程:

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

  2、创设问题情景。(课件显示)

  如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

  今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)

  二、新课教学:

  设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  1.探究推导圆柱的体积计算公式。

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

  讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用,小学数学教案《第十一册圆柱的'体积公开课》。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)

  要用这个公式计算圆柱的体积必须知道什么条件?

  填表:请同学看屏幕回答下面问题,

  底面积(㎡)高(m)圆柱体积(m3)

  63

  0.58

  52

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)

  例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)

  解: d=6dm,h=7dm.r=3dm

  S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

  V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  三.巩固反馈

  1.求下面圆柱体的体积。(单位:厘米)

  同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

  (设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)

  四.拓展练习

  1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)

  2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

  (设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)

  五.课堂小结:

  1.谈谈这节课你有哪些收获。

  2.解题时需要注意那些方面。

  (设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)

  六.布置作业

  1.A册习题2.7

  2.拓展练习2题

  教学反思:

  本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。

圆柱的体积教学设计2

  一、教学对象及学习内容特点分析:

  圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。

  二、教学目的:

  学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。

  学生能应用圆柱体积公式进行圆柱体积的计算。

  学生能利用知识之间相互"转化"的思想探索解决新的问题。

  三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。

  四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。

  五、教学过程的设想和点评

  教师的教学行为学生的学习行为点评

  第一阶段:创设情景,设疑引趣。

  教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。

  提问:小组讨论寻找解决这两个圆柱体积大小的方法。

  1、学生小组讨论解决的方法。

  2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。

  通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。

  第二阶段: 自主探究。概括规律

  1、电脑提供学生探索资源:

  (1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。

  (2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。

  2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的导出过程,从中找到推导圆柱体积公式的方法

  2、学生通过观察圆柱公式的推导过程。

  3、小组讨论填写实验报告。

  4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。

  圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。

  第三阶段:拓展公式,自能训练。

  1、公式拓展。

  在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?

  2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。

  3、质疑

  1、学生可根据已学的"圆的.面积"公式导出。

  (当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。

  2、判断。并说明原因

  (1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。

  (2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。

  (3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3

  1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学

  2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。

  第四阶段:反馈学习、应用提高。

  1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。

  2、小结练习情况,及时表扬对而快的同学及小组

  3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。

  1、赛车游戏:看谁跑得快。

  (1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。

  (2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。

  (3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。

  (4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。

  2、提高练习。考你智慧:看谁攀得高。

  (1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。

  (2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。

  在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。

  六、归纳总结、自我评价。

  1、提出要求,学生谈收获。

  2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。

  七、对教学过程的设想和点评:

  新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。

  新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。

  网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。

圆柱的体积教学设计3

  学 科:数学

  教学内容:最新人教版六年级数学下册第三章《圆柱的体积》

  教材分析:

  〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:

  教学目标

  知识目标:

  (1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。

  (2)通过操作让学生知道知识间的相互转化。

  能力目标:

  倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。

  情感目标:

  让学生感受数学与生活的联系,体验探索数学奥秘的.乐趣,培养学生学习数学的积极情感。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:推导圆柱体积计算公式的过程。

  教具、学具准备:

  采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程:

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

  (2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

  (4)说一说长方体体积的计算公式。

  2、出示橡皮泥捏成的圆柱体。

  出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?

  (有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)

  3、创设问题情景。

  (课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?

  刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)

  (设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)

  二、新课教学

  设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  (一)学生动手操作探究

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

  (通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)

  2、小组合作,探究推导圆柱的体积计算公式。

  (1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)

  老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。

  (2)学生以小组为单位操作体验。

  老师引导学生探究:

  ① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?

  ② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)

  ③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。

  (3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体?

  ②圆柱的体积与拼成后的长方体的体积有什么关系?

  ③这个长方体的底面积等于圆柱的什么?

  ④长方体的高与圆柱体的高有什么关系?

  (二)教师课件演示

  1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 ①把圆柱拼成长方体后,形状变了,体积不变。

  (板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

  (配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?

圆柱的体积教学设计4

  教学目标:

  1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

  2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

  3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

  教学重点和难点:

  圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

  教具:

  圆柱的体积公式演示教具,圆柱的体积公式演示课件

  教学过程:

  一、教学回顾

  1、交代任务:这节课我们来学习《圆柱的体积》。

  2、回忆导入

  (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

  (2)、我们都学过那些立体图形的体积公式。

  二、积极参与探究感受

  1、猜测圆柱的体积和那些条件有关。(电脑演示)

  2、.探究推导圆柱的体积计算公式。

  小组合作讨论:

  (1)将圆柱体切割拼成我们学过的什么立体图形?

  (2)切拼前后的两个物体什么变了?什么没变?

  (3)切拼前后的两个物体有什么联系?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

  2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

  3、要用这个公式计算圆柱的体积必须知道什么条件?

  三、练习

  1、填空

  (1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于

  (),所以,圆柱体的体积等于()用字母表示

  () 。

  (2)、底面积是10平方米,高是2米,体积是

  ()。

  (3)、底面半径是2分米,高是5分米,体积是

  ( )。

  2讨论:

  (1)已知圆柱底面的半径和高,怎样求圆柱的体积

  V=兀r2 × h

  (2)已知圆柱底面的直径和高,怎样求圆柱的体积

  V=兀(d÷2)2×h

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  V=兀(C÷兀÷2) ×h

  3、练习:已知半径和高求体积,已知直径和高求体积。

  四、小结或质疑

  五、作业

  课后做一做第1、2、3题。

  板书设计:

  圆柱的体积

  长方体的体积=底面积x高

  圆柱的体积=底面积x高

  V=Sh

  本节课的设计思考:

  一、让学生在现实情境中体验和理解数学

  《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的`力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:

  在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。

  三、教师的语言非常贫乏

  在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。

  苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术

  是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。

圆柱的体积教学设计5

  【教学目标】

  1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。

  2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。

  3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。

  【教学重点】掌握和运用圆柱体积的计算公式。

  【教学难点】圆柱体积公式的推导过程。

  【教学方法】直观教学法,先用教具让学生观察比较,再让学生动手操作。在实践操作过程中理解掌握圆柱体积的计算方法。

  【教学过程

  一、情景导入,复习旧知。

  1、什么是圆柱的体积?

  ①出示情境图。修一面墙,用哪一种砖,所要的块数较少?为什么?

  ②什么叫做物体的体积?

  ③长方体的正方体的体积计算公式是什么:从公式中可以看出,要计算长方体和正方体的体积必须得到哪些明确的数据?

  ④推测:圆柱的体积可能与它的什么有关?

  2、导入新课。

  这节课我们就一起来探索圆柱体积的计算方法。板书课题:“圆柱的体积”

  二、探索新知

  1、比较大小,探究圆柱的体积与哪些因素有关。(让学生先试着说说)

  (1)图1:比较等高不等底的三个圆柱的体积。(学生通过观察发现等高时底面积越大圆柱的体积也就越大)

  (2)图2:比较等底不等高的五个圆柱的体积。(学生通过观察发现等底时高越大圆柱的'体积也就越大。)

  (3)圆柱的体积计算公式可能是什么样的?V=Sh 2、大胆猜想,求证体积公式。

  (1)引导学生回忆长方体、正方体的体积计算方法。

  (2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?

  (3)学生小组讨论交流。

  (4)各小组参加全班交流汇报。(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。)

  3、演示转化过程,推导公式。

  (1)老师操作转化过程。先分一个四或八等分的再分手上的这个十六等分的。

  (2)学生带问题操作转化过程。

  a:拼成的长方体的底面积等于圆柱的什么?

  b:拼成的长方体的高又是圆柱的什么?(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。)

  师生共同完成推导过程。

  长方体的体积=底面积×高 圆柱的体积=底面积×高 v = s h 圆柱的体积计算公式就是:v=sh

  (4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?v=πr2h

  (5)教材第25页“做一做”第1、2题。(第2题先让学生说说解题步骤,再齐练)

  4、教学例6。

  (1)出示例6。读题,说说从题中获得的信息。

  (2)引导学生思考:解决这个问题就是要计算什么?

  老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。

  (3)学生独立解决问题。

  (4)组织交流反馈。

  交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

  三、 巩固应用

  1、完成教材第26页“做一做”第一题。

  (1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。

  (2)要求这个问题,需要先求什么?再求什么?独立完成。

  2、完成教材第28页练习五第2题。

  (1)尝试完成。

  (2)说说解题思路。

  3、完成教材第28页练习五第3题。

  (1)尝试完成。

  (2)说说解题思路。

  四、课堂小节

  今天这节课,我们一起探究了圆柱体积的计算方法。在探究的过程中,我们经历了猜测、实验、证明的思维过程。圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。

  五、课堂作业

  教材练习五第4、5题。

  板书设计:

  圆柱的体积 长方体的体积=底面积×高 圆柱的体积 =底面积×高 V= s h 圆柱的体积计算公式是v=sh=πr2h

圆柱的体积教学设计6

  教学内容:

  课本第7页圆柱体积

  教学目标:

  理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提高知识的迁移和转化的能力。

  教学重点

  圆柱体积计算

  教学难点:

  圆柱体积的公式推导

  教学关键:

  实物演示帮助

  教具准备:

  圆柱体积演示模型

  教学过程:

  一、复习铺垫。

  1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。)

  2、长方体的体积怎样计算?

  学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。

  板书:长方体的体积=底面积×高

  3、拿出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?

  请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?

  怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

  二、学习探索。

  这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的.体积。

  板书课题:圆柱的体积

  出示目标:1、推导2、计算

  1、圆柱体积计算公式的推导。

  教师出示一个圆柱,提问:这是不是一个圆柱?用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”

  学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。

  然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?

  大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)

  指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?

  小结:可以通过求切拼后的长方体的体积来求圆柱的体积。

  板书:“长方体的体积=底面积×高”。

  请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?

  明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  板书:圆柱的体积=底面积×高

  如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式:V=Sh

  2、自觉书本第7、8页。

  3、教学例3。

  出示例3。

  (1)教师指名学生分别回答下面的问题:

  ①这道题已知什么?求什么?

  ②能不能根据公式直接计算?

  ③计算之前要注意什么?

  (2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的?

  ①V=sh=40×1.8=72

  答:它的体积是72立方厘米。

  ②1.8米=180厘米

  V=sh=40×1800=72000

  答:它的体积是72000立方厘米。

  ③40平方厘米=0.4平方米

  V=sh=0.4×1.8=0.72

  答:它的体积是0.72立方米。

  ④40平方厘米=0.004平方米

  V=sh=0.004×1.8=0.0072立方米

  答:它的体积是0.0072立方米。

  (3)自觉书本第8页例3。提出质疑。

  (4)做第9页“试一试”。

  三、课堂小结。

  通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。

  四、巩固练习。练一练1~4题。

  五、《作业本》第4页。

圆柱的体积教学设计7

  学情分析:

  根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学目标:

  1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

  2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

  3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学重点:

  圆柱体体积的计算

  教学难点:

  圆柱体体积公式的推导

  教学用具:

  圆柱体学具、

  教学过程:

  一、复习引新

  1.求下面各圆的面积(回答)。

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  要求说出解题思路。

  2.提问:什么叫体积?常用的体积单位有哪些?

  3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

  二、探索新知

  1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

  2、公式推导。(有条件的可分小组进行)

  (1)请同学指出圆柱体的底面积和高。

  (2)回顾圆面积公式的推导。(切拼转化)

  3、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  4、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  5、教师演示。

  把圆柱拼成了一个近似的长方体。

  6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的`长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  (1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  (2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  (3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积底面积高

  圆柱体积底面积高

  8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  9、用字母如何表示。

  V=sh

  10、小结。

  圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

  11、教学算一算

  审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

  12、教学“试一试”

  小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

  三、巩固练习

  课后“练一练”里的练习题。

  四、课堂小结

  这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

圆柱的体积教学设计8

  教学内容:

  青教版九年义务教育六年制小学数学六年级下册第23—28页。

  教材简析:

  该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

  教学目标:

  1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

  2、经历探索圆柱计算公式的过程,进一步发展空间观念。

  3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

  教学重点和难点:

  圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

  教具准备:

  多媒体课件、圆柱体积学具、沙子等。

  第一课时

  教学过程:

  一、创设情境,激趣引入。

  谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

  课件出示:两个圆柱体冰淇淋。

  谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

  (生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)

  设计意图:

  从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

  二、回忆旧知,实现迁移。

  谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

  (学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

  设计意图:

  通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

  三、利用素材,探索新知。

  ㈠交流猜测

  谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

  生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?

  师谈话:你的想法很好,怎样转化呢?

  生讨论,交流。

  生汇报,可能会有以下几种想法:

  1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

  2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

  3、如果是橡皮泥那样的.,可以把它重新捏成一个长方体,就能计算出它的体积了。

  谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

  ㈡实验验证

  学生动手进行实验。

  谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

  学生合作操作,集体研究、讨论、记录。

  设计意图本环节让学生亲自动手操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

  四、分析关系,总结公式

  1、全班交流

  谈话:哪个小组愿意展示一下你们小组的研究结果?

  引导学生发现:

  转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

  2、分析关系

  引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

  3、总结公式。

  谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

  (课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

  谈话:你发现了什么?

  引导观察:分的份数越多,拼成的图形就越接近长方体。

  (课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)

  谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

  根据学生的回答教师板书:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh

  设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。

  五、利用公式,解决问题。

  自主练习第1题、第2题、第3题

  设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

  六、课堂总结

圆柱的体积教学设计9

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (学生互相讨论后汇报,教师设疑)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

  4、确定方法,探究实验,验证体积公式。

  (1)、首先要求学生利用实验工具,自主商讨确定研究方法。

  (2)、学生通过讨论交流确定了两种验证方案。

  方案一:将圆柱c放入水中,验证圆柱c的体积。

  方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

  (3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

  (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

  (7)、小结:

  要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第8页例4上面的一段话:用字母表示公式。

  学生反馈自学情况:

  v=sh

  三、巩固发展

  1、课件出示例4,学生独立完成。

  指名说说这样列式的依据是什么。

  2、巩固反馈

  3、完成第9页的“试一试”和练一练”中的两道题。

  (“练一练”只列式,不计算)

  集体订正,说一说圆柱体的体积还可以怎样算?

  4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

  5、拓展练习

  (1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

  (2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的'铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

  四、全课小结:

  谈谈这节课你有哪些收获。

  教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:圆柱体积计算公式的推导过程

圆柱的体积教学设计10

  一、课前系统部分

  (一)、课标分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。

  (二)、教材分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

  (三)、学生分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  (四)、教学目标

  知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

  过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  (五)、教学重难点:

  1、教学重点:掌握圆柱体积的计算公式。

  2、教学难点:圆柱体积计算公式的推导。

  (六)、教学策略

  介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。

  (七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。

  二、课堂系统部分——教学过程

  (一)、创设情境,引起猜想:

  1、激发兴趣:圆柱体转化成近似长方体。

  课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?

  生:体积、高。

  (设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)

  师:揭示课题:圆柱的体积。

  (二)、推导圆柱体积计算公式

  师:怎样用我们已有的知识来计算圆柱的体积?生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?

  师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。

  我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就

  学生回答:就越接近于长方体了。

  师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)

  师:通过观察,你知道了什么?

  生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  师课件展示:点击后出现:长方体的.底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。

  (三)、练一练:

  1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?

  生:完成后小组内交流。

  2、师课件出示:判断题

  一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?

  师:出示下面几种解答方案,让学生判断哪些是正确的。 ①50×=105(立方厘米)

  ②米=210厘米,50×210=(立方厘米)③ 50平方厘米=平方米,×=(立方米)④ 50平方厘米=平方米,×=(立方米)

  生:小组讨论,学生汇报并说出理由。

  师:点击出现:“√” 。

  师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。

  (四)、两个圆柱体积计算公式的比较。

  师课件展示:点击出现圆柱,再点击出现半径r、高h如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢?师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。

  师:说说这两个体积计算公式之间有什么联系呢?生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)

  小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?

  生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。

  (五)、拓展训练练习一:填表

  师课件展示,生小组交流完成。练习二:计算圆柱的体积师课件展示,生小组交流完成。

  练习三:师课件展示:根据圆柱的体积公式计算一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?

  生小组交流完成。

  (六)、小结

  通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。

  (七)、板书设计圆柱的体积

  圆柱的体积=底面积×高=Sh=πrh

  三、课后系统部分——教学后记

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

圆柱的体积教学设计11

  《圆柱的体积》是青岛版标准实验数学课本第十二册第二单元《圆柱和圆锥》中信息窗3的内容,它包括圆柱体的体积计算公式的推导和运用公式计算圆柱的体积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体转化成已学过的立体图形,再通过观察、比较找出两个图形之间的关系,来推导出圆柱的体积计算公式。《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。在此之前,学生已掌握了一定的几何知识与数学方法,部分学生思维活跃,数学成绩较好,加上“圆的面积公式”的推导的学习,辅以多媒体的教学,学生应该容易完成圆柱体体积计算公式的推导过程,为今后学习复杂的形体知识打下扎实的基础

  [教学目的]

  1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。

  2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。

  3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。

  4、借助远程教育的课件资源演示,培养学生抽象、概括的思维能力。

  [教学重难点]

  圆柱体体积计算公式的推导过程

  [设计理念及策略]

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了远程教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:

  1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。

  2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。

  3、练习多样化,层次化。

  4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。

  [教学准备]

  多媒体课件、圆柱体体积演示器

  [教学过程]

  一、回忆旧知,实现迁移。

  1、学习圆的面积时,我们是怎样推导出圆的面积计算公式的?利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。

  2、计算圆的面积。

  A.半径5厘米

  B.直径6分米

  二、指名说说自己想法。

  教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)

  1、交流猜测谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?怎样转化呢?

  2、生讨论,交流。

  三、验证。

  教师演示:

  (1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?

  (2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?

  (3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。

  四、探索圆柱与所拼成的近似长方体之间的关系。

  1、学生动手进行实验。请每个小组拿出学具,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

  2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。

  3、通过刚才的实验你发现了什么?

  ①拼成的近似长方体的体积与原来的圆柱体积有什么关系? ②拼成的近似长方体的底面积与原来圆柱的底面积有何关系? ③拼成的近似长方体的高与原来的圆柱的高有什么关系?

  4、学生汇报交流。

  五、分析关系,总结公式引导学生发现并说出:

  圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 总结公式。

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=Sh

  六、拓展训练。

  一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

  七、课堂总结。

  [附:板书设计]圆柱的体积

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=Sh

  [教学反思]

  1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。

  2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的'特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。

  3、充分利用媒体资源,化解难点,提高课堂效果;注重习题多样化、层次化,拓展学生思维。

  一、情景引入

  1、举起圆柱形水杯。

  (1)同学们请看,这是一个什么形状的被杯子?关于圆柱的知识你都知道哪些?生充分交流。

  很好,关于圆柱你还想知道什么啊?

  体积是吗?

  (2)如果,老师在杯子里面装满水(用水瓶在杯子里倒水,提起学生兴趣),你能知道这些水的体积是多少吗?

  生充分交流

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算(求水的体积了)。评价:这个方法真好,把它转化为求长方体的体积来求水的体积。量筒学生能说出来就说,不能就直接过去。

  (那么现在我想知道杯子的体积,,你有什么好的方法吗?)学生交流测量不规则物体。

  同学们,是不是所有的圆柱都能用刚才的办法求出体积呢?(出示课件压路机柱子)。如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?

  这就需要我们探究出一种适合所有圆柱体积的计算方法,这节课就让我们一起来研究圆柱的体积(出示课题:圆柱的体积)板书课题:圆柱的体积。

  二、新课教学:

  (1)学生猜想环节

  师:大家猜想圆柱体体积和什么有关?学生交流。说出为什么?自己比划着说,也可以用事物演示,比较高和底)

  同学们的思想都很活跃,那么现在你们想采用什么方法去研究圆柱体体积? (万一没有会的,就要引:我们过去学习图形的时候,都是通过哪些方法研究学习。转化。)

  让我们在一起回顾一下圆形面积的推导过程(演示圆形的推导过程)

  我们能把一个圆采用化曲为直、化圆为方的方法,把圆转化为长方形,从而推导出了圆面积的计算公式,板书。转化圆转化为长方形。

  (2)学生探究环节

  现在能否采用类似的方法,将圆柱转化成我们学过的图形来求它的体积呢?来求出它的体积。先独立思考,再把你的想法在组内交流一下。让学生说出怎么样切割。

  谁能说说该怎么分,拿出萝卜,这就是一个圆柱,你想怎么分?亮出刀,来吧,请动手。

  教具演示,一共是16份,让我们闭着眼睛想象一下32,,64份是什么样?(渗透极限思想,得板书出极限)抬头看大屏幕,看看你们想的和老师分的一样吗?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),放到64份时,问学生,看到这里,你发现了什么?:分成的扇形越多,拼成的立体图形就越接近于长方体。

  那么现在你能探究出圆柱的体积公式了吗?请拿出书包里的学具,同桌两人一组,共同探究,看看哪组同学最善于观察也最会配合。

  让学生说,结论都是学生说出来的,老师不要多话。

  学生研究,上来交流,自由选择用教具还是大屏幕。

  出示课件,最后总结,刚才,我们通过将圆柱转化长方体(板书):,推导出了圆柱的体积公式:板书能用字母表示出来吗?v=sh

  简直太棒了,现在让我来考考大家把,看看你们能不能学以致用。

  三、练习巩固

  (1)口答

  (2)分层练习,采用星级分等,让学生自由选择1到3题。星级越高,难度越大。

  (3)知道体积求高的练习,设计到单位的转换。

  (4)开放性题目,自己动手求一个杯子(圆柱)的体积。

  教学反思:

  这次送课下乡的经历,对我来说是一次难得的锻炼机会。这期间的备课、上课、听评课,让我对数学教学的一些方法性问题有了更进一步的认识,并且对自身存在的问题也有了更明确的了解,利于今后有针对性的进行解决。

  先来说一说我通过这次送课下乡,对数学教学的一些方法性认识。首先就是“生生互动”。“师生互动”在我的课堂上体现的应该是比较多的,但是通过丛老师和夏主任等老师的评课,我更深刻的体会到了,现在的课堂更加需要的事“生生互动”。要给学生更多的话语权和自由度。这节课,其实我也尝试了让学生之间去交流,比如说各种小组合作,同桌合作,还有学生回答问题遇到困难的时候自己找其他同学帮助等方式,但是感觉还是停留在表层,没有深入进去。这点在以后的教学中应该引以为戒。

  “个教育”的初步尝试。在课堂上,如何体现个教育。决定不单单是出示几个简单的分层练习,更重要的事要有对知识点的分层,对全体学生具体学习情况的一种把握。个教育,更要求老师把握学生的实际情况,因人而异,因班而异。本节课,在探究圆柱体积公式的时候,我当时让学生讨论了两种方法,一种是底面积乘高,一种是底面周长一半乘高乘半径。这样一讲,反而起到了时而其反的效果,本来学生挺明白的了,一讲,反而有学生糊涂了,这是因为桥头整体学生水平还不是太高,造成的问题。

  下面我具体谈谈对本节课的教学设计和教学过程的一些反思:

  圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在设计教案的时候,我比较注意以下几点:一、抓住新旧知识的联系,利用转化的方法,通过想象、实际操作,从经历和体验中思考,让学生自己探究出圆柱的体积计算公式。二、创设贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和。三、设计练习的时候注重多层次问题,以及开放性问题的设计,满足不同程度学生的需求,将练习的选择权利放手给学生,特别是星级题目的方式,让学生感到很新奇,激发了学生挑战难题的欲望,和解决问题的热情。四、培养学生问题意识。“问题是数学的心脏。”学生有了问题,才会思考和探索,有探索才会有发展。所以我整堂课的设计都是用一个一个的问题串起来的,特别是导课的时候用一次一次的质疑,将学生的积极性都调动起来了,营造出一种学生想要迫切探究圆柱体积计算方法的氛围。这些都是我这节课的一些比较成功的地方。当然这节课也留下了很多的遗憾:首先就是以往上课语言表达的问题再次被点了出来,这次虽然较以往说话语速过慢变成了较快了,可是还是没有什么高低起落调,所以让听课的学生和老师都感觉缺少激情,这个问题应该尽快解决。再就是,课堂上,对学生的放手不够,学生的自主权还是欠缺的,新的理念告诉我们,学生已不是课堂教学中的听众、观众、知识的接受者,而需要成为课堂教学的主动参与者、问题者、自主者、合作者,所以在今后的教学中要着重增加学生的自主权,让学生自己提问题,自己解决问题,遇到困难先求助同学。老师一引导为主,在教学设计的时候,要敢于给学生广阔的空间,本节课,在引导学生猜想解决圆柱体积问题的时候,我先给学生复习了圆转化为长方形的过程,从一定程度上,限制了学生的思维。如果能把这个环节改为温馨提示性质的小提醒,效果就会截然不同了。

  作为一名青年教师,要抓住每一次这样的机会,去积极认真的准备课,全身投入的上课,还要深刻,认真的反思,在不反思中提高、在反思中对症下药。

圆柱的体积教学设计12

  【教材简析】:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  【教学内容】:

  p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

  【教学目标】:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的'体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  【教学重点】:掌握圆柱体积的计算公式。

  【教学难点】:圆柱体积的计算公式的推导。

  【教学过程】:

  第一课时本册总课时:12 课时

  一、复习

  1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、什么叫做物体的体积?你会计算下面那些图形的体积?

  3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

  (2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

  (3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

  (3)通过观察,使学生明确:

  长方体的底面积等于圆柱的底面积,

  长方体的高就是圆柱的高。

  长方体的体积=底面积×高,

  所以圆柱的体积=底面积×高,

  v = s h

  圆柱的体积计算公式是:

  v=s h

  2、课堂练习:

  (1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)让学生解答和板算,最后师生共同完成.

  解:v=sh

  =75×90

  =675(立方厘米)

  答:它的体积是675立方厘米。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的(v=π rh)

  4.作业:

圆柱的体积教学设计13

  教学目标:

  1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。

  教学方法:操作法、推理法、讲授法

  教学过程

  一、复习引新。

  我们以前学过哪些立体图形?

  生答:长方体和正方体。

  它们的体积是怎么求的?

  长方体:长×宽×高,正方体:棱长×棱长×棱长。

  二、教学例4。

  1、出示长方体和正方体。

  它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?

  生答:体积=底面积×高,所以长方体和正方体的体积相等。

  2、出示圆柱。

  猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

  生猜测:相等。

  究竟如何,今天我们就一起来研究圆柱的体积。

  板书课题:圆柱的体积。

  问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)

  生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。

  依据是圆可以转化成长方形计算面积。

  3、出示课件。

  回顾圆的面积计算公式是怎样推导的。

  4、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  5、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  6、教师演示课件。

  把圆柱拼成了一个近似的长方体。

  7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  3、拼成的长方体的.体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积=底面积×高

  圆柱体积=底面积×高

  9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  10、用字母如何表示。

  11、出示例4。

  现在你知道圆柱的体积与长方体、正方体的体积相等了吗?

  为什么?

  生答:体积相等,都是用底面积×高。

  V=sh

  三、巩固练习。

  1、出示练习七第一题。

  学生直接把答案填写在表中。

  提问:你是根据什么填写的?

  2、练一练。

  这两题,你打算怎么计算?

  生答:不知道底面积,要先算出底面积,再乘高。

  3.14×2×5 = 62.8(平方厘米)

  3.14×(6÷2)×8 = 226.08(平方厘米)

  3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?

  问:这道题和前面做的有什么不同?怎么计算?

  生答:这是求容积的。所以数据是从里面量的。

  4、练习七第2题。

  观察下面的3个杯子,你能看出哪个杯子的饮料多?

  请学生猜一猜。

  请学生列出三道算式。

  (1)3.14×(8÷2)×4

  (2)3.14×(6÷2)×7

  (3)3.14×(5÷2)×10

  问:你能不求出结果直接比较出大小吗?

  生答:第一个杯子的饮料多。

  5、练习七第三题。

  学生独立解答。

  指名说说是怎样算的?

  3.14×3×5×1= 141.3(千克)

  141.3千克<150千克

  答:这个保温茶桶不能盛150千克水。

  四、总结。

  今天这节课你学到了什么?

圆柱的体积教学设计14

  教学目标:

  1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学准点:

  掌握圆柱体积公式的推导过程。

  教学设想:

  1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

  2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

  3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

  4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。 5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。 6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

  7.由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

  教学过程:

  一、问题导入,质疑问难

  师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?

  师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?

  生:圆柱学具。

  师:是的。仔细观察,你有什么发现?

  生:圆柱学具占据了学具槽的空间。

  师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?

  生:圆柱的体积就是圆柱所占空间的大小。

  师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。

  生:体积大小接近,不能确定。

  师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)

  二、图形转化。猜想推理

  师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。) 生:用公式计算。 生:用水或沙子转化计算。 师:你们是怎样转化的,具体说说。

  生:用橡皮泥转化计算。

  生:用圆形纸片叠加计算……

  师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?

  生:因为没有实验学具,所以只能用公式计算。

  师:其他的方法可以在课后进行。

  师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。

  生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。

  师:联系旧知识,采用转化法,确实不错。 师:那现在它是一个圆柱,你想怎么办?

  生:像刚才一样进行平均分。

  师:你能具体说说吗?

  生:沿着圆柱的底面直径平均切分成16个小扇形。

  师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的'结果。

  生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。

  师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……

  师:这是同学们刚才的转化过程。

  师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。

  师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)

  总结文字公式:长方体体积=底面积×高

  圆柱体体积=底面积×高

  师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。

  生:v=sh v=(d/2)2π×hv=π2×h v=(c÷π/2)2π×h

  师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)

  生:相同之处都是底面积乘以高,不同是底面积求法不同。

  师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。

  三、运用公式,解决问题

  师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。

  1号底面积50平方厘米,高2.1分米:

  2号直径是10厘米,高20厘米;

  3号半径是4厘米,高22厘米;

  4号底面周长31.4厘米,高18厘米。

  师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?

  师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?

  师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。

  四、巧用公式,多重探究

  师:同学们到现在为止,你都学到了哪些关于圆柱的知识?

  生:表面积、体积、容积。

  师:老师这里有一组习题。请你们选择合适的问题。

  师:读完之后,你认为求什么就可以大声地说出来。

  (生:体积、容积、表面积。)

  学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?

  师:说说你选择问题的根据是什么?

  生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。

  五、开放训练,拓展提升

  师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。

圆柱的体积教学设计15

  教学目标:

  1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;

  2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。

  3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。

  教学重点:

  掌握和运用圆柱体积计算公式进行正确计算。

  教学难点:

  理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

  教学准备:

  1、用于演示把圆柱体积转化成长方体体积的教具。

  2、多媒体课件。

  教学过程:

  一、复习导入、揭示课题

  谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)

  1、呈现长方体、正方体和圆柱的直观图。

  2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)

  3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。

  二、自主探究,精讲点拨

  1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?

  2、学生小组讨论、交流。

  教师:同学们自己先在小组里讨论一下

  (1)你准备把圆柱体转化成什么立体图形?

  (2)你是怎样转化成这个立体图形的?

  (3)转化以后的立体图形和圆柱体之间有什么关系?

  3、推导圆柱体积公式。

  学生交流,教师动画演示。

  (1)把圆柱体转化成长方体。

  (2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)

  (3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。

  (4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)

  (5)推导圆柱体积公式。

  讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的`高相当于圆柱体的高。教师根据学生回答演示课件。)

  教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:

  圆柱的体积 = 底面积×高

  V = S h

  三、运用公示,解决问题

  教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?

  ①知道圆柱的底面积和高,可以求圆柱的体积。

  练习七的第1题:填表。

  ②知道圆柱的底面半径和高,可以求圆柱的体积。

  试一试。

  ③知道圆柱的底面积直径和高,可以求圆柱的体积。

  练一练的第1题:计算下面各圆柱的体积。

  ④知道圆柱的底面周长和高,可以求圆柱的体积。

  一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?

  四、迁移应用,质疑反馈。

  1、判断正误,对的画“√”,错误的画“×”。

  2、计算下面各圆柱的体积。

  3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。

  五、全课小结。

  这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。

  六、作业布置:

  完成作业纸上的习题

  教学反思

  本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。

  而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  不足之处是:

  1、

  2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。

【圆柱的体积教学设计】相关文章:

“圆柱的体积”教学设计06-05

《圆柱的体积》教学设计(15篇)06-03

小学数学圆柱的体积教学设计07-14

《圆柱的体积》教学设计(精选15篇)06-03

《圆柱的体积》教学设计15篇05-16

《圆柱的体积》教学设计集合15篇06-05

小学数学圆柱的体积教学设计大全【3篇】05-13

体积和体积单位教学设计11-18

圆柱的体积评课稿11-15