商不变的规律教学设计

时间:2023-06-12 14:16:36 设计 我要投稿
  • 相关推荐

商不变的规律教学设计

  在教学工作者实际的教学活动中,时常需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。我们该怎么去写教学设计呢?下面是小编帮大家整理的商不变的规律教学设计,希望对大家有所帮助。

商不变的规律教学设计

商不变的规律教学设计1

  一、教材分析:

  “商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。

  二、学生分析

  本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。

  三、教学目标:

  依据新课标要求,结合本课教学内容和学生的认知规律,确定如下学习目标。

  知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。

  能力目标:初步培养学生主动探索,独立获取知识的能力和运用商不变的规律解决生活中的数学问题的能力。

  情感目标:渗透数学来自于生活实践的辨证唯物主义思想,培养学生初步的数学应用意识,唤起学生学数学的兴趣。

  教学重点:探索与发现商不变的规律。

  教学难点:运用商不变的规律进行除法的简便计算。

  教法:观察法、对比法。

  学法:小组合作交流

  教学过程:

  一、激趣引思,导入新课

  1、创设情境:

  秋天的时候,猴王在美丽的花果山上为小猴分桃子。猴王说:“我把8个桃子平均分给2只猴子。”小猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了试着说:“能不能再多分一点?”猴王又说:“我拿800个桃子平均分给200只猴子,这回行了吧?”这时小猴笑了,猴王也跟着笑了。

  2、启发提问,小组讨论:为什么小猴和猴王都笑了?谁是聪明的一笑?

  学生分小组交流。

  能把算式列出来吗?

  二、探讨新知

  1、全班交流。

  板书:8÷2=4

  80÷20=4

  800÷200=4

  2、师:在除法算式里,除号左边的8、80、800这些数我们称作为什么?(被除数)

  除号右边的2、20、200这些数我们称作什么?(除数)

  除得的结果我们又称作什么?(商)

  3、师:如果以第一个等式为标准,下面两个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)

  这节课我们就来讨论“商不变的'规律”(板书课题:商不变的规律)

  4、仔细观察黑板上的三组算式,你能说说被除数和除数都是怎样变化的吗?

  先独立思考,再和同桌互相讨论

  5、汇报:

  我们先从上往下看,被除数和除数发生了什么变化?

  (被除数从8到80,乘10,除数从2到20,也是乘10;

  被除数从80到800,乘10,除数从20到200,也是乘10。)

  再从下往上看,被除数和除数又发生了什么变化?

  (被除数和除数同时除以相同的数)

  6、你能像猴王一样分桃子吗? 试试看,写一些你的算式

  ( )÷( )=( )

  ( )÷( )=( )

  ( )÷( )=( )

  7、你能从我们黑板上的一组算式以及你写的算式中,你发现了什么规律? 在纸上写一写

  8、汇报:重点找一组乘的数不相同

  师:谁能用一句话概括这两个规律?引导学生说出规律描述:被除数和除数同时乘或除以相同的数(零除外),商不变。

  三、巩固练习,深入讨论

  师:刚才通过大家的努力,我们找到被除数和除数的变化规律,使得商不变。现在老师要看看大家是否真正理解了

  判断题:(师:听清楚要求:用手势表示对错)

  (1)75÷15=(75÷5)÷(15÷5)

  (2)90÷30=(90×0)÷(30×0)

  师:乘以0可以吗?为什么?(因为0不能作为除数,没有意义)

  看来我们要把0特殊对待,写上(0除外)

  (3)25×3=(25×4)×(3×4)

  师:这样对吗?口算左边75,右边1200,为什么会出现这样的问题?

  商不变的规律适合在什么运算中?(除法中)

  (4)60÷12=(60÷2)÷12

  (5)15÷5=(15+5)÷(5+5)

  (6)80÷4=(80×6) ÷(4×2)

  师:同学们今天学得真细心!我们已经运用集体的智慧发现了完整的商不变规律,我们一起来读一读吧!

  师:读完了这个规律,你觉得运用这个规律时应该注意什么,有什么需要提醒大家的?

  (除法,同时,相同的数,零除外,教师标出重点符号)

  师:大家都提醒了别人这些需要注意的,智慧老人要考考你们到底会不会运用商不变的规律

  四、应用知识——星级挑战

  1、一星级挑战

  看例子:950÷50=(950÷10)÷(50÷10)= 95÷5

  请你计算:360÷20=(360÷10)÷(20÷10)=36÷2

  8400÷30=(8400÷10)÷(30÷10)=840÷3

  师:做了这个练习,你发现商不变性质有什么用?

  (我们可以运用商不变规律将末尾有0的除法简化为数字比较小的除法进行口算。)

  2、二星级挑战

  看例子:550÷25=(550×4)÷(25×4)=2200÷100=22

  请你计算: 600÷25 20xx÷125

  说一说你是怎样想的?

  (还可以运用商不变规律把除数转化成整十整百的,进行简便计算。)

  3、三星级挑战,与计算机比比速度

  480……0 ÷ 240……0 (99个0)

  说一说你是怎么想的?(同学们真棒呀,连计算器算起来都费力的计算题,大家可以轻而易举的解决了,这都是谁帮的忙?商不变性质)看来商不变的规律用处可真大,它可以帮助我们解决生活中的许多实际问题。

  五、课堂小结:这节课我们学习了什么?你有什么收获?

  板书设计:

  商不变的规律

  8÷2=4

  80÷20=4

  800÷200=4

  被除数和除数同时乘或除以相同的数(零除外),商不变。

商不变的规律教学设计2

  教学目标:

  1. 理解和掌握商不变的规律,并能运用这一规律口算有关除法,培养学生的观察、概括以及提出问题、分析问题、解决问题的能力。

  2.学生在参与观察、比较、概括、验证等学习过程中,体验成功,收获学习的快乐。

  教学重难点:

  1重点:理解归纳出商不变的规律。

  2.难点:会初步运用商不变的规律进行一些简便计算。

  教学过程

  一、创设情境,激发兴趣

  导入:同学们想玩游戏吗?今天我们就一起玩一个自编除法的游戏。老师这有三个数字——8、2、0、,每个数字在一道算式中可以出现一次、两次或多次,也可以一次也不出现,但是要求每一道算式中的商必须等于4,限时一分钟,看谁写得多! 预测:

  8÷2=4

  80÷ 20=4

  800÷ 200=4

  8000÷ 20xx=4

  88÷ 22=4

  888÷ 222=4 8888÷ 2222=488888÷ 22222=4 880 ÷220=4 8800 ÷2200=488000÷ 22000=4

  发现:我们无论编出多少道不同的算式,什么是不变的?(板书:商不变)

  商不变,是什么在变呢?(板书:被除数和除数)

  探究:被除数和除数究竟有怎样的.变化,商却不变呢?这节课我们一起来研究商不变的规律(板书课题)

  二、合作学习、探究规律

  探究:请观察我们自己编的一组算式,看看被除数和除数究竟是怎样变化的而商却不变?

  要求:可以自己研究,也可以小组内共同探究。

  交流:说出自己的发现。

  预测1:学生对于“同时”、“相同”的用词不一定能用的准,理解不一定能非常透彻。

  解决:让学生在自己充分的理解,叙述的基础上提炼出“同时”、“相同”一词。

  预测2:对于“零除外”,有些同学可能会想到这一情况,但对于其原因不是很清楚。

  解决:让学生实际举例,使其充分理解——零不能做除数。

  三、应用规律,反馈内化

  1.在○里填上运算符号,在 里填上适当的数。

  (1)16÷ 8=(16× 2)÷ (8 ×□ )

  (2)480÷80=(480÷10)÷(80○10)

  (3)150÷25=(150○□ )÷(25○□)

  2口算。

  竞赛:一分钟内能完成几道题,并说说做的快的原因。

  3简算

  400÷25=你会算吗?怎样变成我们学过的形式在计算呢?

  预测:400÷25=(400× 4)÷ ( 25× 4)=1600÷ 100=16 400÷25=(400÷5)÷(25÷5)=80÷5=16

  四、总结延伸,应用拓展

  今天我们一起研究了商不变的规律,请同学们大胆猜测一下,在乘法,加法、减法中会不会也有积、和、差不变的规律呢?请同学们利用课余时间与学习伙伴一起研究、思考。 教学反思:在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,效果很好。 上完本节课有几点收获:

  1、由学生感兴趣的游戏引入新课,能激发学生探究新知的欲望;

  2、练习内容形式多样,由浅入深,让学生进一步内化商不变的规律;

  3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系;

  4、揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后提示学生0乘任何数都得0,0不能当做除数,然后总结出商不变的规律。然而也有不足之处:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用过程中,讲解简便运算后,总结不到位:由于在讲解练习题时,把握不熟练:在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!

商不变的规律教学设计3

  教学目标:

  知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

  情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。

  教学重点:

  使学生理解并归纳出商不变的规律.

  教学难点:

  使学生会初步运用商不变的规律进行一些简便计算.

  预设过程:

  一、创设情景,感悟变与不变

  (课件投影,创设情景)

  电脑演示孙悟空大闹海龙宫夺金箍棒的情节,从金箍棒的变化帮助学生理解“变与不变”、“扩大”、“缩小”的概念,作好铺垫。提出揭示课题,今天就研究相关问题。

  二、 探究规律

  1. 创新情境,提出问题

  孙悟空大闹天宫,如来佛祖要收服他,让他在手掌上翻筋斗逃跑。

  (1)孙先跨出一步1米,如来的手掌长1米,请问如来手掌长是孙步长的几倍?(让学生说出算式:1÷1=1,师板书)

  (2)孙生气了,跨出一大步5米,谁知如来的手掌长长5米,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:5÷5=1,师板书)

  (3)孙更生气了,跨出了更一大步10米,小朋友猜,如来的手掌长会长长几米,(10米),小朋友真聪明,猜对了,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:10÷10=1,师板书)

  (4)孙更气到脸都紫了,小跺了一小步1/2米,小朋友不用猜,肯定知道如来的手掌长也长了1/2米,谁能说说这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:1/2÷1/2=1,师板书在1÷1=1上面)

  (5)孙气疯了,打了一个筋斗云,小朋友知道是多少吗,(108000里),如来的手掌长也疯长,也长到同样长的108000里,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:108000÷108000=1,师板书)

  指算式提问:请同学们观察这组算式,你能发现什么?

  2、探索与发现:

  (让学生以个人观察算式分析思考后,小组、全班交流活动形式组织学生探索和发现商不变规律。)

  1、引导学生先独立思考,再小组交流,最后全班交流。

  学生可能会汇报:

  a、在同一个算式中的被除数和除数都相同,商都是1。(师表扬这位同学观察很仔细,肯定学生回答后,指着算式中所有得数回应:从算式中我们看出,确实这几个除法算式中,商是相等的。还有哪位同学结合算式说得具体一些?)

  b、这几道都是用除法计算的,被除数和除数虽然不同,但商是相同的。(师表扬这位同学分析很到位,数理很清楚,肯定学生回答后,再次指着算式回应:从算式中我们看出,商是相等的,被除数和除数确实不同。现在请同学们再联系算式,看看它们之间有关系吗,你还能再发现什么?大家先独立思考1分钟,再小组交流。)

  2、引导小结:谁能用一句完整的话概括一下我们刚才发现的规律,汇报小结后板书:被除数和除数同时乘相同的数,商不变。

  3、质疑:被除数和除数同时乘0,商还不变吗?引导强调零除外。

  4、试一试,验证规律。

  刚才看的神话故事,现实生活中这样的例子有吗?

  (1)师拿了一瓶矿泉水,说:老师去买了2瓶矿泉水,付给售货员4元,请帮老师算算一瓶多少钱?指名生板书:4÷2=2

  (2)同学算得真好,售货员确实告诉我每瓶2元,写算式2÷1=2

  (3)假如我现在还想再10瓶,谁愿意来算算要多少钱?写算式20÷10=2

  (4)如果老师有100元,谁能很快地算出能买多少瓶?写算式100÷(50)=2,为什么?

  指着4个算式让学生讨论验证商不变规律

  5、引导学生归纳:被除数和除数同时除以相同的数(零除外),商不变。

  6、让学生给我们的发现的规律起个名字。揭示课题:商不变规律。

  三、应用规律。

  1、让学生提出问题:(指着课题)看到这规律你想了解什么?

  鼓励学生大胆思考,积极发言,最后集中解决规律应用方面的问题。

  2、谁愿意举例说说你发现商不变规律在哪些地方很好用。

  (让学生先说,不够老师结合例子补充)

  (1)除法的简便计算。如950÷50可变成95÷5来计算,注意强调要整除的'情况下使用才方便。

  练习:p75第1、2小题、观察与思考。

  (2)生活运用,物品的合理估算。

  练习:p75第3小题。

  (3)除法的小数计算和比例的应用等,在此暂不作介绍,以后五、六年级将会学习到,如果有兴趣的同学可自己找资料学习。

  四、深化、拓展。(游戏:救孙悟空)

  孙犯错了,最终被如来压在五指山下,但是如来说,我们小朋友要是能动脑筋,过四关,答对四组问题就可救了孙来,小朋友你敢迎接挑战吗?

  第一关:运用规律,解决问题。

  4500÷500= 4800÷400=

  要求学生口算,并说说是怎么想的?调动学生已有的经验,并引导学生用商不变的规律解释以前的算法。

  第二关:从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。让学生独立做在书上,集体订正。

  72÷9= 36÷3=80÷4=

  720÷90= 360÷30= 800÷40=

  7200÷900=3600÷300=8000÷400=

  第三关:我当小裁判。(投影出示题目)

  (1)让学生判断“下面的计算对吗?”

  小结:在计算被除数和除数末尾有0的除法,商不变的规律能让我们的计算变得既简单又快捷,但在计算时要注意被除数和除数要同时缩小相同的倍数。

  (2)(14×2)÷(2÷2)=7( ),(14×5)÷(2×3)=7( )

  第四关:填空:在□中填数,在○中填运算符号:

  200÷40=5

  (200×4)÷(40×□)=5(200÷2)÷(40÷□)=5

  (200×3)÷(40○□)=5(200÷4)÷(40○□)=5

  (200×□)÷(40○□)=5

  师:□里可以填“0”吗?为什么?

  四、课堂总结:谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)

  五、布置课外作业:(三题中选做其中一份)

  1、举例说说商不变规律。

  2、说说你发现生活中的商不变规律在哪应用了,如何用,好处在哪里?

  3、写一篇关于你探索商不变规律的数学日记。

【商不变的规律教学设计】相关文章:

《找规律》教学设计02-04

找规律教学设计03-30

积的变化规律教学设计02-01

《找规律》教学设计范文07-03

小学数学找规律教学设计02-18

找规律教学设计15篇04-06

《找规律》教学设计15篇02-23

《找规律》教学设计(15篇)02-23

《找规律》教学设计19篇05-05