- 相关推荐
小学数学圆柱的体积教学设计
作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们应该怎么写教学设计呢?下面是小编收集整理的小学数学圆柱的体积教学设计,欢迎阅读与收藏。
小学数学圆柱的体积教学设计1
一、课前系统部分
(一)、课标分析
《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。
(二)、教材分析
《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
(三)、学生分析
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的'过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(四)、教学目标
知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
(五)、教学重难点:
1、教学重点:掌握圆柱体积的计算公式。
2、教学难点:圆柱体积计算公式的推导。
(六)、教学策略
介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。
(七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。
二、课堂系统部分——教学过程
(一)、创设情境,引起猜想:
1、激发兴趣:圆柱体转化成近似长方体。
课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?
生:体积、高。
(设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)
师:揭示课题:圆柱的体积。
(二)、推导圆柱体积计算公式
师:怎样用我们已有的知识来计算圆柱的体积?生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?
师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。
我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就
学生回答:就越接近于长方体了。
师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)
师:通过观察,你知道了什么?
生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
师课件展示:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。
(三)、练一练:
1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?
生:完成后小组内交流。
2、师课件出示:判断题
一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?
师:出示下面几种解答方案,让学生判断哪些是正确的。 ①50×=105(立方厘米)
②米=210厘米,50×210=(立方厘米)③ 50平方厘米=平方米,×=(立方米)④ 50平方厘米=平方米,×=(立方米)
生:小组讨论,学生汇报并说出理由。
师:点击出现:“√” 。
师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。
(四)、两个圆柱体积计算公式的比较。
师课件展示:点击出现圆柱,再点击出现半径r、高h如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢?师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。
师:说说这两个体积计算公式之间有什么联系呢?生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)
小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?
生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。
(五)、拓展训练练习一:填表
师课件展示,生小组交流完成。练习二:计算圆柱的体积师课件展示,生小组交流完成。
练习三:师课件展示:根据圆柱的体积公式计算一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?
生小组交流完成。
(六)、小结
通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。
(七)、板书设计圆柱的体积
圆柱的体积=底面积×高=Sh=πrh
三、课后系统部分——教学后记
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
小学数学圆柱的体积教学设计2
活动目标:
1、初步感知圆柱体的外形特征。
2、会辨认圆柱体的物体,能从周围环境中找出相似的物体。
3、发展观察能力和辨别能力。
4、让幼儿懂得简单的数学道理。
5、让孩子们能正确判断数量。
活动准备:
1、教具准备:圆柱体的积木若干;
2、操作册:第6册P53.
活动过程:
1、预备活动。
(1)师幼互相问候。
(2)走线,线上游戏:摸摸快回来。圆圈中摆放若干大砖块、大积木、易拉罐。幼儿听音乐在圆圈周围自由走动。
2、集体活动。
(1)复习长方体、正方体、球体等,感知圆柱体。
请一名幼儿把双手伸到相中选中一个几何体,摸一摸、想一想,充分感知后大声地向其他幼儿描述魔道的东西是什么样的。
(2)认识圆柱体。
游戏继续进行,当幼儿摸到圆柱体,经过描述后,其他幼儿不能准确猜出是什么几何体时,教师举起圆柱体,告诉幼儿:这种形体叫圆柱体。
请幼儿在教室里找出和圆柱体的积木相同形体的物品,通过自有触摸和摆弄,感知圆柱体的外形特征。
(3)请幼儿试着滚动圆柱体和球体,观察它们在滚动的时候有什么特点,有什么不一样。并尝试从写披上向下滚,看看谁滚得快、滚得远。
3、完成操作册。
(1)教师示范、讲解操作册习题。
(2)分发幼儿操作册,教师巡回指导幼儿进行。
(3)教师批改幼儿操作册,错误的地方督促幼儿订正。
4、交流小结,收拾学具。
指导幼儿参观学习同伴的活动成果,收拾操作材料。
活动反思:
本节课的内容是学生已经掌握了长方体、正方体、圆的知识基础上进行教学的,这也为后面学习圆锥的知识奠定了基础。
成功之处:
1.注重知识的拓展。在教学圆柱的认识时,通过把一张长方形的硬纸贴在木棒上,快速转动木棒,让学生观察转动起来后的形状是一个圆柱形。对于这个形状学生很容易想到,但是对于这个内容背后的知识更加需要学生掌握。在教学中我没有把知识点止于这一步,而是利用教具让学生清楚的观察到:当以长方形的长为轴旋转,长就是圆柱的高,宽就是圆柱的底面半径;当以长方形的宽为轴旋转,宽就是圆柱的底面半径,即以长方形的哪条边为轴旋转,哪条边就是圆柱的'高,而另一条边就是圆柱的底面半径。通过这样的教学,学生在解决相应的问题时就不会感到无从下手,同时也培养了学生的空间想象能力。
2. 加强学生的动手操作,注重圆柱知识的推导过程。在教学圆柱的侧面积时,通过学生的动手操作,让学生对圆柱的侧面展开图是长方形有了一个清晰的认识,特别是圆柱的侧面积公式的推导过程,学生发现了长方形的长=圆柱的底面周长,宽=圆柱的高。因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。
3.注重数学思想方法的渗透。在教学圆柱的体积时通过教具的现场演示,学生清晰地看到了圆柱转化成长方体的过程,学生很容易发现:长方体的体积等于圆柱的体积,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,由此推导出圆柱的体积公式也是底面积乘高,并进一步推导V=∏r2h。在这一过程中,学生发现虽然形状发生了改变,但是体积不变,这也是数学教学中需要学生掌握的数学思想方法,除此之外,转化思想也是必不可少,这两种数学思想方法在解决问题过程中有着至关重要的作用,这对于以后的学习,对于学生的终身学习有着不可估量的作用。徐云鸿主任说:几何直观于学生而言,是一种有效的学习方式;于教师而言,是一种有效的教学手段。它是数形结合思想的体现,在小学数学教学中是不可缺少的、重要的数学思想方法。虽然徐老师说的是几何直观,但是对于其它在小学阶段中必须渗透的变中不变思想、转化思想也是是不可缺少的、重要的数学思想方法。
小学数学圆柱的体积教学设计3
教学内容:
冀教版小学数学六年级下册第32—34页。
教学目标:
知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。
过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。
情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。
教学重点:
探索并掌握圆柱体积公式,能计算圆柱的体积。
教学难点:
圆柱体积公式的推导过程及简单应用。
教具准备:
两个不易直观比较体积大小的圆柱桶,探索体积的课件
教学时数:
一课时
教学过程:
一、情景导入
1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题?2.学生观察思考后回答。
生:亮亮和爷爷的生日蛋糕都是圆柱形的。
生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。
3.出示两个圆柱体,学生观察、猜想。
师:同学们这两个圆柱体,哪个大些?(说出理由)生:我认为第一个大一些。生:我认为第二个大些。生:要是能算出体积就好了?
师:是啊,有时我们观察到的大小不一定准确,我们还是通过计算比较大小更准确些。今天我们就一起学习“圆柱的体积” 3.揭示并板书课题:圆柱的体积
(设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。)
二、合作探究
(一)引导回忆
1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识?2.学生回忆后回答。
3.教师结合学生的回答适当的板书。板书:长方体的体积=底面积×高生:我还想知道怎样求圆柱体积的大小?
师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。
(设计意图:通过创设问题情境,可以引导学生运用已有的生活经验和就知识积极思考,形成任务驱动的探究氛围。
(二)推导、论证“圆柱的体积” 1.引发思考猜想
师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的`体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。
生:我们是不是象学过的长方体和正方体体积一样用“底面积×高”呢?
师:同学猜想的很有道理。
师:再回顾我们以前探索圆面积公式时是把圆转化成哪种图形来计算的?(课件演示:圆面积公式的推导)生:我们可以按照这样的方法把圆柱体转化为已经学过的长方体或正方体推导出圆柱体体积。 2.师生合作推导验证
教师用课件演示,学生观察思考。
师:把圆柱体平均分成16份、32份??同样可以拼成一个近似长方体。请同学们观察两次等份的异同。学生观察思考后回答
生:相同点是都可以拼成一个近似的长方体。
生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。
3.同学们观察很仔细,请你们想想,拼成的近似长方体和圆柱体有什么关系?你发现了什么?
4.小组同学讨论后汇报结果,同时板书。
生:(1)把圆柱拼成长方体后,形状变了,体积不变。
板书:长方体的体积=圆柱的体积
(2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
师:(1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。
板书:圆柱的体积=底面积×高
,用字母表示V=Sh
师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。三、出示例题:一根圆柱形的木料,底面积是320平方厘米,高是米。这根木料的体积是多少立方厘米?1.学生读题试算。 2.集体订正。
四、应用与拓展
1.完成教材第34“试一试”。(1)学生仔细看图,明确题意。(2)学生自主完成后,全班交流。
五、课堂总结
本节课你有什么收获?还有什么疑问?附:板书
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
教学反思:
本节课的教学体现了:
一、利用迁移规律引入新课,为学生创设良好的学习情境;
二、遵循学生的认知规律,引导学生观察、思考、猜想、论证,调动学生多种感观参与学习;
三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好,达到预期效果。不足之处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。
【小学数学圆柱的体积教学设计】相关文章:
圆柱的体积教学设计06-26
《圆柱的体积》教学设计06-26
“圆柱的体积”教学设计06-05
《圆柱的体积》教学设计15篇05-16
圆柱的体积教学设计(15篇)05-13
圆柱的体积教学设计15篇08-19
《圆柱的体积》教学设计(15篇)06-03
《圆柱的体积》教学设计(精选15篇)06-03
《圆柱的体积》教学设计集合15篇06-05