三角形教学设计人教版
在教学工作者开展教学活动前,常常要写一份优秀的教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么什么样的教学设计才是好的呢?下面是小编整理的三角形教学设计人教版,仅供参考,希望能够帮助到大家。
三角形教学设计人教版1
活动目标:
1、培养幼儿对图形的兴趣和数学活动常规。
2、初步发展幼儿的观察力、分析能力和概括能力。
3、感知并说出三角形的基本特征,能找出和三角形相似的物体。
4、引发幼儿学习图形的兴趣。
5、让幼儿体验数学活动的乐趣。
活动准备:
多媒体、课件各一,图形若干。
活动分析:
观察、对比是孩子们探究的过程,通过图形的对比引导幼儿感知三角形的基本特征,作为本次活动的重点。,活动中运用课件直观、形象的特点,通过多种游戏形式,采用启发法、提示法,引导幼儿进一步掌握并概括三角形的基本特征,从而突破难点部分。活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延伸环节,自然结束。
活动过程:
一、导入。
采用观察法,通过课件中图形宝宝的口吻引出三角形。
二、展开。
1、采用游戏法引导幼儿在众图形中寻找三角形。
2、引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。
3、动手操作。
a.幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。
b.观察并说出三角形像什么。
4、游戏“猜猜我是谁”。组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。
5、游戏“捉迷藏”
幼儿从简单的画面中找出三角形。
6、引导幼儿观察并找出活动室中那些物品像三角形。
三、延伸。
请幼儿到生活环境中进一步寻找三角形的踪迹。
教学反思:
幼儿园的'数学活动相对于其他活动枯燥、单调,容易使幼儿失去学习兴趣。因为这个时期的幼儿年龄小,逻辑思维尚未发展,所以本次活动中我为幼儿创设了一个可操作的丰富材料的环境,为幼儿创设了一个可选择性、可操作性的空间。使幼儿能独立的操作材料,并大胆的表达自己的想法。幼儿的自主性,选择性,独立性得到了充分的体现。通过一系列的游戏活动,达到了主题总目标预设的要求。
三角形教学设计人教版2
教学目标
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点
三角形的内角和
课前准备
电脑课件、学具卡片
教学活动
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
任何一个三角形三个角的'和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、6题
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
三角形教学设计人教版3
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的'结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,①已知等腰三角形的底角,求顶角。
②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
三角形教学设计人教版4
一、活动目标
1、引导幼儿认识三角形。
2、引导幼儿分辨出三角形的物品。
二、活动准备
1、三角形模型
2、三角形相关物品
3、三角形泡棉
4、幼儿操作卡
三、活动过程
1、情境导入:点心时间到了,小动物们都围在桌子旁边吃着点心。
请你们看看点心的形状都是不同的,你认识这些形状吗?
2、交流探索:引导幼儿认识三角形,分辨出三角形物品。
(1)教师带领幼儿进入认知环节,引导幼儿初步感知三角形。
(2)看,小老虎和小狗的点心形状是一样的.,你知道这是什么形状的吗?
3、教师引导幼儿认识三角形的主要特征。
(1)教师出示三角形卡片和三角形的泡棉学具,引导幼儿说出三角形的主要特征。
(2)小朋友们,请仔细观察,说一说三角形是什么样的?
(3)想一想,正方形和三角形有什么不同?
4、实践操作:引导幼儿操作卡片上内容。引导幼儿区分物品的形状,找出三角形物品。
5、小结总结:有三条边、三个角的封闭图形是三角形,我们身边还有很多三角形的物品,就像小红旗、衣架、屋顶等。
四、活动建议
引导幼儿自助操作练习卡,学习探索,找出拼合图形之中的三角形。
五、活动延伸
(1)引导幼儿从活动室、家里或者其他场所寻找三角形物品。
(2)在区角中,引导幼儿用圆形,正方形和三角形的积木或卡片拼搭图形。
三角形教学设计人教版5
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1.通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
【设计意图:也自然导入新课。】
二、提出问题引发猜想
1、提出问题:看到这个课题,你有什么问题想问的'?
预设:
(1)三角形的内角指的是哪些角?
(2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设:①量算法②剪拼法③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测:三角形的内角和是180°?
验证:量拼
结论:任意三角形的内角和是180°
三角形教学设计人教版6
教学目标:
1、通过观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2、培养学生观察操作的能力和应用数学知识解决实际问题的能力。
3、体验数学与生活的联系,培养学生学习数学的兴趣。
教具、学具准备:
学生准备:三角尺
教师准备:多媒体投影、课件、三角板、礼物盒(内含三角形、长方形、正方形各一个)、作业单(每人2份)
教学重点:
1、理解三角形的特性。
2、在三角形内画高。
教学难点:
理解三角形高和底的含义,会在三角形内画高。
教学过程:
一、联系旧知
同学们,老师今天给大家带了一份礼物(出示盒子,摇一下)咦!里面有东西!大家想不想知道里面有什么?生答。师:那让我们来摸摸他里面的东西,好不好?生答。师:老师需要一位小助手蒙眼睛,谁愿意帮帮老师?准备就绪,宣布活动规则:将你摸到的东西大声地说出来并告诉大家你是如何判断出来的。
活动结束后教师总结:长方形和正方形我们已经学习过了,所以大家能够根据他们的性质准确的认出他们,三角形大家也能够认出来,但是今天我们还需要更进一步地学习三角形,看看三角形有哪些特性? (板书课题)
二、情境导入
师:大家在生活中见过三角形吗?生答。师:那现在老师给大家出示一组图片,看看大家能不能找出图中的三角形(课件出示图片)。
师:在我们的生活中,有一样三角形形状的东西一直陪伴着大家,你们知道吗?生答:红领巾。师:没错,是红领巾(课件出示)今天老师就把同学们的红领巾画到黑板上,我们一起来研究一下,看看它有哪些特点(黑板上画三角形)。
三、探究新知
1、发现三角形的特征
师:同学们知道三角形各部分的名称吗?指名说一说。 教师根据学生的回答在黑板上画的三角形标出各部分的名称(课件展示)。
现在请同学们继续观察这个三角形,你能看到什么?师根据学生的回答总结出三角形有三条边、三个角、三个顶点。
2、概括三角形的定义
师:请同学们画出一个三角形。边画边数一数你刚才画的三角形有几条线段? 师:同学们再来看看老师这的几个三角形都是几条线段?是不是由三条线段组成的图形都是三角形呢?
师:同学们请看老师摆成的图形是不是三角形?为什么?那什么叫三角形呢? (学生边总结,教师边板书)
师:请你们帮助老师判断下面的图形是不是三角形?(课件出示练习题)
3、学习三角形的命名
师:通常我们用字母A、B、C表示三角形的三个顶点,上面这个三角形就可以表示为三角形ABC。 (出示课件)
师:同学们看这个图形由几个三角形组成,用字母分别怎么表示? 指名说一说。
4、认识三角形的底和高
师;以前我们学过怎么画平形四边形的高还记得吗? 请一生上台给平行四边形作高。
师:三角形也是有高的,我们来学习一下。(课件出示三角形的高的'定义和画法)
5、学画三角形的高。
师:现在同学们已经认识了三角形的高,你会画三角形的高吗?
(1)要求学生在作业单上画出三角形制定底边上的高。指名学生展示,并讲解画高的方法,教师适当给予点评。
(2)分析强调直角三角形搞得画法。
(3)全班集体评价,总结三角形高的画法及注意事项。
思考:一个三角形可以画出几条高?(3条)
四、总结评价,回顾全课
通过这节课的学习,你对三角形有了哪些深层次的认识?还有什么有关三角形的问题?
五、作业
1、完成课本第65页练习十五,第1题。
2、自选作业单上一个图形,画出它的三条高。(有能力的同学请把三个都画出来。)
三角形教学设计人教版7
【教学内容】:
人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:
认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:
1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】
教学重点:探索和发现三角形的内角和是180°。
教学难点:充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°
【教学过程】
一、复习准备。
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?
二、探究新知
(一)创设情境,生成问题,认识三角形的内角及内角和
(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”
师:动画片看完了,请大家想一想,什么是三角形的内角和?
师引导学生说出三角形三个内角的度数和叫做三角形的内角和。
多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。
(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)
(二)、引导猜测三角形的内角和是180度
师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?
预设:学生回答直角三角形。
师:你为什么这么认为呢?
生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。
(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)
(三)、验证三角形的内角和是180度
1、确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!
师:分类验证是科学验证的一种好方法,下面我们就用分类验证的`方法来验证一下,看看三角形的内角和是不是180°?
2、操作验证
教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。
智慧锦囊:
(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。
(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?
3、汇报交流
师:谁来汇报你的验证结果?
(1)测算法
师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?
(2)剪拼法
(3)折拼法
师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!
(4)推算法
①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)
师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。
课件演示
②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。
4、总结提炼
师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是()度?
现在可以下结论了吗?
(板书:三角形三个内角和等于180°。)
师:那在“三角形的争吵中”谁是对的?
(达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)
(四)利用三角形内角和是180解决问题
1、看图,求出未知角的度数。
2、书本85页“做一做”
在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。
(达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4。)
三、目标达成检测方案:
1、求出三角形各个角的度数。
2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。
四、课堂小结,提升认识
同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?
师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己
【三角形教学设计】相关文章:
三角形教学设计09-21
《三角形的特性》的教学设计03-09
《三角形的面积》教学设计07-30
《三角形的认识》教学设计08-01
三角形的面积教学设计04-02
三角形的认识教学设计05-16
《三角形特性》教学设计05-11
《三角形分类》教学设计04-28
三角形的分类教学设计04-28
三角形的内角教学设计06-05