分数乘法应用题教学设计

时间:2023-11-20 18:36:56 设计 我要投稿
  • 相关推荐

分数乘法应用题教学设计

  作为一位兢兢业业的人民教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们该怎么去写教学设计呢?以下是小编收集整理的分数乘法应用题教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

分数乘法应用题教学设计

分数乘法应用题教学设计1

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的'。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

分数乘法应用题教学设计2

  教学目标

  1、使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

  2、在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

  教学重点和难点

  1、正确分析关键句,找准单位“1”。

  2、掌握分析思路,弄清所求问题是求谁的几分之几是多少。

  教学过程

  (一)复习准备

  1、口算,并口述第二组算式的意义。

  2、列式。

  这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

  这里的b,a,x就是什么?(单位“1”)

  3、找出下列各句子中的单位“1”,再说明另一个数量与单位“1”的关系。

  提问:(3)题中怎样求甲?(4)题中怎样求乙?

  今天我们继续学习分数乘法应用题。

  (二)讲授新课

  1、出示例3。

  2、理解题意,画出线段图。

  (1)读题,找出已知条件和所求问题。

  (2)提问:你认为应着重分析哪些已知条件?(小华储蓄的.钱是小亮的

  (3)分组讨论这两个已知条件应怎样理解。

  (4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

  18元看作单位“1”,平均分成6份,小华储蓄的钱数相当于这样的5份。

  师板演:

  数看作单位“1”,平均分成3份,小新储蓄的钱数相当于这样的2份。

  所以小新储蓄的钱数是以谁为单位“1”?(以小华储蓄的钱数为单位“1”。)

  怎样用线段表示小新的钱数?

  生口述,师继续板演:

  (把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)

  求什么?(小新的钱数)

  3、分析数量关系,列式解答。

  (1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

  必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

  因此这道题要分两步解答。

  根据哪两个条件能求出小华的钱数?

  元。)

  求出小华的钱数,又怎样求小新的钱数?

  (2)以小组为单位共同完成列式解答。

  (3)口述列式,并说明理由。

  求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

  求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

  (4)你能列综合算式解答吗?

  答:小新储蓄了10元。

  (三)巩固反馈

  1、出示“做一做”。

  小明有多少枚邮票?

  (1)读题,找出已知条件和问题。

  (2)请你确定从哪些条件入手分析。

  (3)小组讨论:分析已知条件并画线段图。

  (4)反馈:请代表分析,并出示该小组的线段图。

  作单位“1”,平均分成6份,小新的邮票数量是这样的5份。

  均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

  应先求什么?再求什么?

  (6)列式解答,做在练习本上。

  2、出示21页的9题。

  要求学生独立画图,分析解答。再互查。

  3、变换条件和问题进行对比练习。

  (1)找出已知条件中的相同处和不同处。

  (2)画图分析并列式解答。

  4、选择正确列式。(小组讨论完成)

  第二天看了多少页?

  (四)布置作业

  课本20页第6题,21页第10,12题。

  课堂教学设计说明

  解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

  这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

  教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法应用题教学设计3

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的.,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数乘法应用题教学设计4

  教学内容:

  浙教版第十一册第103页例1例2,练习十七题。

  教学目标:

  1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。

  2、通过分析、比较,培养学生善于思考问题提出问题的能力。

  3、培养学生良好的审题习惯。

  4、渗透环保观念和终身学习观念。

  教学重点和难点和关键

  教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。

  教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。

  教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。

  教学过程:

  一、复习铺垫

  1、找单位“1”

  (1)一本书,已经看了1/4,还剩几分之几?

  (2)实际投资是计划投资的4/5。

  (3)男生25人,占全班人数的5/9。

  2、口答:

  (1)一堆煤,运走了3/5,还剩几分之几?

  (2)女生人数比男生人数多1/3,女生比男生多的人数占( )的1/3。

  (3)白兔比黑兔少1/4,白兔是黑兔的几分之几?

  二、创设情景、引入新知

  1、你们喜获吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤竖家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。

  2、今天老师还给大家带来了几条有关丹顶鹤的信息。

  出示信息1:国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4。

  根据这些信息:你能算出20xx年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?

  (20xx×1/4=500(只),求20xx只的1/4是多少?)

  3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)

  出示信息2(例4):

  揭示课题:这就是我们今天共同探讨的`问题“稍复杂的求一个数的几分之几的应用题”(板书课题)

  三、引导探究,解决问题

  1、请同学们把信息2表达的意思用线段图表示出来。

  展示并口述画的线段图。

  2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先立解答,师巡视,再交流)

  3、两名学生板演两种解法。

  4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)

  方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。

  方法二:把全世界的丹顶鹤的只数看着单位“1”,先求出其他国家占总只数的几分之几,再求出其他国家的只数?

  5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)

  〈1〉相同点:单位“1”相同。

  〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。

  四、再次探索

  1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:

  出示信息3:20xx年我国约有500只丹顶鹤,20xx年我国的丹顶鹤的只数比20xx年的只数多4/5,20xx年我国约有多少只?

  2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解20xx年我国丹鹤的只数比20xx年的只数多呢?(把20xx年500只丹顶鹤看作单位“1”,20xx年比20xx年多的只数是20xx年只数的4/5)

  3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)

  教师引导学生画出20xx年的线段,然后让学生立完成余到此为下部分,一人板演。(巡视)

  4、展示线段图并叙述。

  指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把20xx年的只数分成了几部分?哪两部分?(一部分与20xx年同样多,另一部分比20xx年多2/5。)

  5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)

  6、你能说出解题思路吗?

  (第一种解法:先求多的只数+20xx年的只数=20xx的只数,第二种解法:先求出20xx年占单位“1”的几分之几,或20xx年是20xx年的(1+4/5)倍,再求20xx年的只数;也就是求500只的(1+4/5)倍是多少)

  五、回顾小结

  1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。

  (信息2把总数20xx只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把20xx年和20xx年相比,把20xx年的只数分成两部分,一部分是和20xx年的只数同样多,另一部分比20xx的只数多2/5。

  2、相同点:

  单位“1”的数量都是已知的。

  3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位"1"的量减去或加上它的几分之几,或者先算出要求的数量占单位"1"的几分之几,再用单位"1"的量乘这个几分之几。)

  4、指导学生看书例题5,完成课本内容并质疑问难。

【分数乘法应用题教学设计】相关文章:

《分数乘法》教学设计11-04

分数乘法教学教学设计06-27

《整数乘法运算定律推广到分数乘法》的教学设计07-04

乘法口诀教学设计02-03

8乘法教学设计05-29

小数乘法教学设计06-04

分数乘分数教学设计03-07

分数除以分数教学设计05-20

分数除以分数教学设计06-28

分数教学设计02-12