《正方体的表面积》教学设计

时间:2024-01-15 13:47:05 设计 我要投稿

《正方体的表面积》教学设计

  作为一位杰出的教职工,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的《正方体的表面积》教学设计,欢迎大家分享。

《正方体的表面积》教学设计

《正方体的表面积》教学设计1

  教学目标:

  1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

  教学重点难点:

  长方体和正方体表面积的含义及其计算方法的推导过程。

  教学准备:

  长方体、正方体模型。

  教学过程:

  一、猜测导入

  出示两个纸盒(一个长方体、一个正方体)。

  提问:长方体和正方体有哪些特征?

  谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?

  有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

  二、探究新知

  1、引导探究长方体表面积的.计算方法。

  (1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

  (2)学生独立列式,指名汇报,并根据学生回答进行板书。

  解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

  解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

  答:至少要用148平方厘米的硬纸板。

  (3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?

  2、自主探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?

  (2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

  (3)组织交流反馈。

  3、揭示表面积的含义。

  谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?

  揭示:长方体或正方体6个面的总面积,叫做它的表面积。

  (板书课题:长方体和正方体的表面积)

  三、练习巩固

  完成课本“练一练”以及练习四第一、二、五题。

  四、全课小结

  谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?

  五、布置作业

  1、做练习四第三、四题。

《正方体的表面积》教学设计2

  【教学内容】西师版第十册第39页例1。

  【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。

  2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。

  4让学生体会所学知识在实际中的应用价值。

  【教学重点】

  长方体、正方体表面积的计算方法。

  【教学难点】

  确定长方体每一个面的长和宽。

  【教具学具】

  教具:长方体、正方体纸盒(可展开)。

  学具:长方体、正方体纸盒、剪刀。

  【教学过程】

  一、复习引入

  师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?

  出示一个长方体,指名摸它的表面。

  师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。

  二、探究学习

  1探索长方体表面积的计算方法

  出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?

  4人小组合作完成这个长方体表面积的计算。

  汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。

  生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面

  师:你能把这种求表面积的方法归纳一下吗?

  生:长×宽×2+长×高×2+宽×高×2。

  生2:我们组是把6个面的面积分别算出来后再相加。

  生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。

  师:为什么求出这3个面的面积和,再乘2就可以了?

  生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。

  师:你能把这种求表面积的方法归纳一下吗?

  生:(长×宽+长×高+宽×高)×2。(师板书)

  师:观察真仔细,归纳能力真强。

  师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。

  2探索正方体表面积的计算方法

  师:通过大家的'积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?

  出示一个正方体,让学生自主探索方法。

  汇报交流。

  生1:我是把6个面的面积加起来。

  生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。

  生3:我觉得只要求出一个面的面积再乘6就可以了。

  师:能给大家讲讲你的想法吗?

  生:正方体6个面的面积都是相同的。

  师:你能把这种求表面积的方法归纳一下吗?

  生:正方体的表面积=棱长×棱长×6。(师板书)

  三、巩固练习

  1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。

  2练习十第3题。先独立完成,再与同桌交流自己的算法。

  四、课堂小结

  通过这节课的讨论学习,你有什么收获和体会?

《正方体的表面积》教学设计3

  教学目标:

  1、建立表面积概念。

  2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

  3、运用公式实际应用,并提升学生的数学思维能力。

  教学重点:

  1、长方体表面积公式的求法探究。

  2、公式的实际应用。

  教学难点:

  长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。

  教具、学具的准备:

  长方体盒、正方体盒、桔子、长方体展开图、课件

  教学研究过程:

  (一)回忆长方体、正方体特征,重建表象。

  1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?

  2、生:汇报

  (长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)

  (正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)

  3、师小结并引出课题

  同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)

  (二)建立表面积概念,认识表面积。

  1、师:看到这个课题,你最想知道或最想了解什么?

  2、生交流:什么是表面积?

  怎样求表面积?

  求表面积在生活中有什么用途?

  表面积和以前所学的面积有什么不同?

  3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?

  生摸一摸,说一说。

  4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的是哪里,那正方体呢?

  5、生指一指,摸一摸,说一说。

  (三)探求长方体表面积计算方法、正方体表面积计算方法。

  1、师:我们知道什么是表面积,如何来求它们的表面积呢?

  小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。

  (师在小组间巡视)

  2、生交流汇报各种求长方体表面积的方法。

  3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)

  长方体表面积=(长宽+长高+宽高)2

  S=2(ab+ah+bh)

  4、课件展示:通过课件的展示,让学生直观感受长方体

  表面积方法的研究过程。

  5、生总结:正方体表面积计算方法(含字母)

  正方体表面积=棱长棱长6

  S=6a2

  (四)基本反馈练习

  1、计算一香皂盒的表面积

  师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,请你计算这个盒的表面积。

  生试做,并指生上台板演。

  2、课件出示(三个立体图形),分别计算它们的表面积。

  3、生在实物投影仪前讲解交流。

  (五)解释应用(课件出示题目)

  1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?

  a、生交流思路

  b、列式。

  2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?

  a、生试做

  b、交流思路

  3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?

  a、小组内交流思路

  b、全班交流解题策略

  c、生计算

  3、谈收获或体会

  通过这节课的研究与交流,你的收获或体会是什么?

  反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。

  框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。

  框架二:建立表面积概念

  在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。

  框架三:探求表面积计算方法

  在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。

  框架四:巩固练习

  公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。

  框架五:解释应用

  把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。

  框架六:谈本节课的收获

  孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多人认为枯燥的学科中产生丰富的情感,激发起孩子们热爱数学的美好情感。

  在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的表面积。对问题的'思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。

  这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。

《正方体的表面积》教学设计4

  教学内容

  教材第89 页:长方体和正方体的表面积

  教学目标

  1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。

  2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

  3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

  教学重难点

重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。

  难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。

  教学准备

  教师:多媒体课件,长方体纸盒。

  学生:长方体纸盒

  教学设计

  一、复习铺垫

  同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?

  生答。(教师强调面的知识)

  二、创设情境 、引入问题

  老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?

  生:长方体纸盒的表面积。

  师板书课题:长方体和正方体的表面积

  师:看了课题同学们想问什么?

  师生共议研究课题:

  (1)什么叫长方体和正方体的表面积?

  (2)怎样求长方体和正方体的表面积?

  三、合作探究、学习新知

  1. 探索长方体表面积的计算方法。

  什么叫长方体的表面积呢?请看大屏幕。

  多媒体出示长方体展开图。

  师:同学们看完后有什么想说的?

  生:围成长方体的是6个长方形。

  生:长方体的表面积就是展开后6个面的总面积。

  师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。

  师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?

  多媒体出示长方体粘合图

  师:同学们看完后,又想到了什么呢?

  生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。

  生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。

  〔着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕

  多媒体出示长方体图形

  师:现在同学们能求出它的表面积吗?

  生:不能。

  师:为什么?

  生:没有数据。

  师课件出示数据,引导学生把数据放到长方体相应的位置。

  2.探究每个面的长和宽与长方体的长、宽、高有什么关系?

  师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?

  多媒体展示,引导学生讨论:

  上、下每个面的长和宽分别是长方体的()和();

  前、后每个面的长和宽分别是长方体的`()和(); 左、右每个面的长和宽分别是长方体的()和()。

  小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:

  上、下每个面的长和宽分别是长方体的(长)和(宽);

  前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。

  3、尝试计算

  问:现在你能求出做这纸盒至少需要多大面积的纸板吗?

  学生尝试计算,出示活动要求:

  (1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。

  (2) 把自己的计算方法和小组内的同学交流。

  教师参与学生的活动。

  反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问

  学生板演后说明想法:

  生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。

  生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。

  教师注意引导学生语言叙述的完整性,准确性。

  师多媒体展示学生的汇报结论。

  指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

  多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

  4探究正方体的表面积计算方法。

  多媒体出示:棱长为5厘米的正方体的表面积是多少?

  学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.

  四,巩固新知、拓展运用

  1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。

  2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。

  3、课件出示“聪明的你”,引导学生注意:

  (1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);

  (2)计算时,关键是找准数据。

  学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。

  4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。

  五、课堂小结

  通过学习,你有哪些收获?还有那些不懂的问题?

《正方体的表面积》教学设计5

  教学目标:

  1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。

  2、进一步发展学生的空间观念和空间想象能力。

  3、密切数学与生活的联系,提高学生学习数学的学习兴趣。

  教学重、难点:

  能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。

  教学准备:

  多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。

  教学过程:

  一、复习长方体和正方体的特征

  师:长方体有什么特征?

  (长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)

  正方体呢?

  (正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。)

  师最后根据学生的口答小结。

  二、复习长方体和正方体的.表面积的计算方法

  1、复习长方体每个面的面积的计算方法。

  提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?

  学生口答,课件及时反馈。

  2、复习长方体和正方体表面积、底面积和侧面积的计算方法。

  课件依次出示长方体和正方体,逐个提问。课件及时反馈。

  3、求长方体和正方体的表面积(只列式不计算)。

  第一个是长方体,6个面都是长方形;

  第二个是长方体,有2个面是正方形,其余4个面是长方形;

  第三个是正方体。

  先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。

  三、复习长方体和正方体表面积的实际应用

  1、长方体和正方体表面积的实际应用的基础练习。

  (1)出示一组物体的图片。

  师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的同学互相说一说。

  (2)计算无盖的长方体玻璃鱼缸的玻璃面积。

  先审题:要求玻璃面积,实际是求长方体哪几个面的面积?

  再口答算式,并计算。

  (3)计算火柴盒内盒和外盒的面积。

  先独立思考,再集体交流。

  根据学生口答板书:

  火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)

  火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)

  (4)选择题

  (1)1、一个通风管的横截面是边长0、2米的正方形,长2、5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?()

  A、0、2×2、5×50

  B、0、2×0、2×2、5×50

  C、0、2×2、5×4×50

  还可以怎样计算?

  展示长方体通风管展开成一个长方形的过程,帮助学生思考。

  还可以列式为:0、2×4×2、5×50

  (2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米?()

  A、20×10+(20×2+10×2)×2

  B、20×10+20×2+10×2

  C、(20×10+20×2+10×2)×2

  (3)一个棱长3分米的正方体,在它的顶点处切下一个棱长1分米的小正方体,表面积和原来相比()。

  A、减少了

  B、不变

  C、增加了

  (4)一个正方体的棱长之和是24厘米,它的表面积是()平方厘米。

  A、6B、48C、24

  (5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大()倍。

  A、3B、6C、9

  (6)把两个正方体拼成一个长方体,它的表面积减少()面的面积。

  A、1B、2C、3

  2、拓展练习。

  (1)学校大门前有6级台阶,每级台阶长6米,宽0、4米,高0、2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?

  (2)设计包装纸。

  a、把两包抽纸拼在一起有几种拼法?哪种最省包装材料?

  b、把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?

  3、思考题。

  下图表示用棱长1厘米的正方体摆成的物体。(书第18页)

  (1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。

  (2)这个物体的表面积是多少平方厘米?

  (3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?

  四、课堂作业

  1、小区大门前有8级台阶,每级台阶长5米,宽0、4米,高0、2米。

  (1)8级台阶一共占地多少平方米?

  (2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?

  2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。

  (1)粉刷的面积是多少平方米?

  (2)如果每平方米需工料费1、5元,粉刷工料费共需多少元?

《正方体的表面积》教学设计6

  教学目标

  (三维)

  1、根据正方体的特征,推导出正方体表面积的计算方法。

  2、学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。

  3、感受数学与生活的密切联系,体会数学学习的价值。

  教学

  重点与难点

  教学重点:正方体表面积的计算方法。

  教学难点:解决生活中有关长方体、正方体表面积的计算问题。

  教学

  方法与手段

  教学方法:观察法、演示法。

  教学手段: 迁移类推-自己发现-总结方法。计算正方体的表面积是在计算长方体表面积的基础上进行教学的。所以把迁移类推的机会留给学生,让学生自己去发现,类推出正方体表面积的计算方法,以培养学生的逻辑思维能力和再创造能力。

  使用教材的构想

  在操作与观察中,将知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成正方体表面积的表象,建立概念,以动促思,引导学生在探索中发现和总结出计算正方体的方法,让学生充分发表自己的见解,在多种算法的交流中,选择适合自己的算法,培养创新意识。

  第二课时:正方体表面积的计算

  教学内容:教材第35页例2及练习六的相关题目。

  教学准备:正方体展开图。生:正方体纸盒。

  教学过程:

  一、复习引入

  1、什么是长方体的表面积?

  2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)

  3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?

  如果给你正方体一条棱的.长度,你能算出它的表面积是多少吗?今天,这节课我们就来学习正方体表面积的计算方法。[板书课题]

  二、实践探索

  1、教学例2

  看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?

  要想知道包装这个礼盒至少要多少包装纸,也就是求什么?

  “至少”是什么意思?

  学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)

  2、P35页做一做

  让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。

  作业设计:

  P36第6题

  P37第7题

  P36第4、5、6题。

  板书设计:

《正方体的表面积》教学设计7

  教学内容:

  书本24页例2。

  教学目标:

  (1)通过动手操作,使学生理解表面积的意义,初步掌握长方体和正方体的表面积的计算方法。

  (2)使学生会运用表面积的意义,解决生活中的简单问题。

  (3)运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

  教具准备:

  多媒体课件、长方体和正方体纸盒。

  学具准备:

  长方体和正方体纸盒各一个

  教学过程:

  (一)复习

  1、口算。

  0.25×4= 0.125×8= 4.5+5.5= 1.2—0.2=

  8.1÷9= 0.42×6= 1.8+2.2= 0.2×5=

  2、填空

  (1)长方体有()个面,()条棱,()个顶点。

  (2)长方体相对的两个面的面积(),相对的棱的长度。()。

  (3)正方体的()个面都是()形,它们的面积都(),十二条棱的长度都()。

  (4)相交于一个顶点的三条棱的长度分别叫做长方体的()。

  (5)长、宽、高都相等的长方体叫做(),也叫做()。

  (二)探讨新课

  1、什麽叫长方体的表面积?长方体的表面积=()=()。

  2、什麽叫长方体的'表面积?小组讨论正方体的计算方法。

  3、汇报小结:

  (1)正方体6个面的面积总和,叫做它的表面积。

  (2)正方体的表面积=棱长×棱长×6。

  (3)质疑:棱长×棱长能算出什么?再×6又算出什么?

  (4)计算长方体的表面积需要哪些条件?计算正方体的表面积需要哪些条件?

  (5)尝试练习:例:一个正方体纸盒,棱长3厘米,求它的表面积。

  (三)巩固练习

  1、一个正方体的棱长是1.2分米,求它的表面积。

  2、一个正方体金鱼缸(无盖),棱长是5分米,做这个金鱼缸至少需要多少平方分米玻璃?

  3、一个正方体饼干盒的棱长是3.5分米,在它的周围贴上商标纸(上下面不贴),贴商标纸的面积有多少平方分米?

  4、填空

  (1)一个正方体的表面积是54平方米,它的一个面的面积是()平方米。

  (2)一个正方体的棱长总和是48分米,它的表面积是()平方分米。

  (3)一个长方体的长是4分米,宽是2分米,高是1分米,它的表面积是()平方厘米。

  (四)全课小结

  长方体的表面积=长×宽×2 +长×高×2 +宽×高×2=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  教学反思:

  本节课教学《正方体的表面积》是在掌握正方体的特征和理解长方体的表面积计算的基础上进行的,本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。

  1、让学生运用长方体的表面积计算方法迁移到正方体。培养迁移能力。

  2、利于正方体的特征小组讨论正方体的表面积的计算方法,培养空间思维能力。

  3、巧编习题,以“练”促思。学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维。

  本节课也有不足之处,练习的强度还要提高。

《正方体的表面积》教学设计8

  教学目标:

  结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

  知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

  3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

  教学重点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学难点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学媒体

  教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

  学具:长方体、正方体纸盒、剪刀。

  教学过程

  一、复习准备。

  (一)口答填空。

  1、长方体有( )个面,一般都是( ),相对的面的( )相等;

  2、正方体有( )个面,它们都是( ),正方形各面的( )相等;

  3、这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

  4、这是一个( ),它的棱长是( )厘米,它的'棱长之和是( )厘米。

  (二)说一说长方体和正方体的区别?

  教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

  二、学习新课。

  (一)长方体和正方体表面积的意义。

  1、教师提问:什么叫做面积?

  长方体有几个面?正方体有几个面?

  (用手按前、后,上、下,左、右的顺序摸一遍)

  2、教师明确:这六个面的总面积叫做它的表面积。

  3、学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

  4、教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

  (二)长方体表面积的计算方法

  1、学生归纳:

  上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

  前后两个面大小相等,它是由长方体的长和高作为长和宽的;

  左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

  2、教师提问:想一想,长方体的表面积如何计算?(学生讨论)

  老师板书:

  上下面:长×宽×2

  前后面:长×高×2

  左右面:高×宽×2

  3、练习解答。

  做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  4、巩固练习。

  一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?

  教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

  学生:应该少算上边的一面。

  列式:4×3+4×2.5×2+3×2.5×2

  (三)正方体表面积的计算方法

  1、教师提问:正方体的表面积如何求吗?

  学生:棱长×棱长×6

  2、试解例2。

  一个正方体纸盒,棱长3厘米,求它的表面积。

  32×6

  =9×6

  =54(平方厘米)

  答:它的表面积是54平方厘米。

  教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

  学生:少一个面。列式:32×5

  教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

  3、巩固练习:一个正方体的面积是1.2分米,求它的表面积。

  三、巩固反馈。

  1、一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?

  2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?

  3、判断正误,并说明理由。

  (1)长方体的三条棱分别叫它的长、宽、高。( )

  (2)一个棱长4分米的正方体,它的表面积是:42×6=48(平方分米)( )

  (3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小。( )

  四、课堂总结。

  什么是长、正方体的表面积?长、正方体的表面积如何计算?

《正方体的表面积》教学设计9

  教学内容

  教材第33页至第34页例1,完成“做一做”和练习六第1题至第3题。

  教学目标

  知识目标

  1.通过动手操作,观察长方体和正方体的展开图,理解长方体和正方体表面积的意义。

  2.根据长方体展开图,能说出每个面的长、宽与长方体的长、宽、高的关系,会计算长方体的表面积。

  能力目标

  1.培养学生自我探索的能力。

  2.结合具体情况能灵活运用表面积的计算方法,解决生活中的实际问题。

  情感目标

  培养和发展学生的空间观念。

  教学重点

  掌握长方体表面积的计算方法。

  教学难点

  长方体每个面的长和宽与长方体的长、宽、高的关系。

  媒体准备

  课件、长方体和正方体纸盒各一个、剪刀、牙膏盒。

  教学过程

一、巩固旧知,重建表象

  师:上两节课我们学习了长方体和正方体的认识,谁来说说长方体、正方体有哪些特征?(长方体有6个面,……正方体6个面都是完全相等的正方形……)

  二、实物导入、揭示课题

  在我们的日常生活中有许多长方体、正方体纸盒(如牙膏盒、粉笔盒等),工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。板书课题“长方体和正方体的表面积”。

  提问:当你看了课题以后,你想知道什么?

  三、演示操作、建立概念

  1.初步认识长方体的表面积。

  大家拿出长方体纸盒摸一摸,你能摸到几个面?(6个)

  师:把这个长方体的纸盒沿着棱剪开是什么形状的呢?大家想看看吗?教师示范操作。

  沿着棱把长方体展开,你有什么发现?

  1、原来的立体图形变成了平面图形。

  2、长方体的外表展开后是由6个长方形组成的。

  请同学们观察一下,展开前长方体的每个面,在展开后是哪个面?分别用上、下、前、后、左、右标明。

  在标的过程中你有什么发现?(前后两个面的`面积相等……)

  2.初步认识正方体的表面积。

  教师出示正方体粉笔盒实物图,把剪好的正方体的展开图展示给学生看,问:你又发现了什么?

  通过观察和动手操作,谁知道什么叫做长方体或正方体的表面积?

  课件出示:长方体和正方体6个面的总面积,叫做它的表面积。

  四、学习新知,探索规律

  1、明确长方体每个面的长和宽与长方体长、宽、高的关系

  问:既然长方体六个面的总面积叫做它的表面积,那么怎样计算长方体的表面积呢?

  同学们观察长方体然后讨论:长方体每个面的长和宽与长方体长、宽、高有什么关系?

  2、探求表面积的计算方法

  出示课件,师:做这样一个牙膏盒至少需要多少硬纸板,就是求什么呢?(求牙膏盒的表面积)

  请大家独立完成,如有困难可合作完成。

  找学生把不同的方法写到黑板上,并说一说每一步求的是哪个面的面积?

  比较几种方法有什么不同?他们之间有什么联系?

  课件出示:长方体的表面积 =长×宽×2+长×高×2+宽×高×2

  长方体的表面积 =(长×宽 +长×高 +宽×高)×2

  小结:我们在求长方体的表面积时,一定要求6个面的面积,方法有多种,用喜欢方法做就可以了。

  师:要算长方体的表面积,我们必须知道它的什么?(长、宽、高)

  五、巩固练习,拓展提升

  1、做一个微波炉的包装箱(如右图),至少要用多少平方米的硬纸板?

  引导学生求微波炉包装的面积,实际上是求包装盒这个长方体的表面积。

  师:大家注意到“至少”二字了吗?谁能说说为什么要加上这两个字?

  (做纸板箱的时候要有粘合处,这里的“至少”指的是粘合处不算,就光算六个面的面积之和就好了。)

  2、亮亮家要给一个长0.75米,宽0.5米,高1.6米的简易衣柜换布罩(如右图,没有底面)至少需要用布多少平方米?

  六、课堂小结 想象延伸

  小结:同学们,刚才我们学习了什么叫长方体和正方体的表面积,怎样计算长方体的表面积?那么在生活中,我们还要根据具体的情况来采取正确的解答问题的方法,比如说有的时候需要求6个面,有的时候只要求5个面、甚至只要求其中的4个面。

  板书设计

  长方体和正方体的表面积

  上、下:长×宽

  前、后:长×高

  左、右:宽×高

《正方体的表面积》教学设计10

  教学目标:

  1、知识与技能:学生建立表面积概念,会求长方体与正方体的表面积。

  2、过程与方法:小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

  3、情感、态度与价值观:运用公式实际应用,并提升学生的数学思维能力。

  教学重点:

  1、长方体表面积公式的求法探究。

  2、公式的实际应用。

  教学难点:

  长方体、正方体的表面积公式探究方法。

  教具、学具的准备:长方体盒、正方体盒、长方体展开图、课件

  教学过程

  一、创设情境 导出新课

  师:同学们,告诉大家一个好消息,今天是我们学习的好伙伴淘气的十岁生日,他的好朋友笑笑要送给他一份生日礼物。这个礼物准备好了,可是老师对这个包装盒却不太满意,你能帮助笑笑出一个好主意吗?

  生:可以在包装盒外面包一层彩纸。

  师:老师也是这么想的。看,老师用彩纸将这个包装盒包装了一下,请看(出示课件)。

  师:漂亮吗?

  生:漂亮。

  师:现在新问题又出现了。要把这个包装盒包装好,需要多大的彩纸呢?要求多大的彩纸就是求什么呢?

  生:求六个面的面积之和。

  师:对,求六个面的面积之和就是求长方体的表面积。今天,我们就来研究长方体的表面积.(板书课题)

  二、引导探索 初步感知

  1、长方体表面积的意义

  师:同学们,刚刚我们对长方体礼盒的哪些部分进行了包装?

  生:它的六个面。

  师:而且,刚刚我们知道的长方体六个面的面积之和就是长方体的表面积,那么,你是如何理解长方体的表面积的呢?(师提问)

  生:就是求六个面的总面积。(出示课件)

  师:下面,就请同学们拿出自己准备的长方体,仔细地观察,长方体的六个面的面积之和包括哪些?(同学之间互相交流)

  师对照长方体讲解表面积的含义。(出示课件,学生齐读长方体表面积的意义)

  师:那么正方体呢?(请同学对照正方体说一说)

  师:他说得对不对呢?

  生:对。

  师:正方体的表面积也就是六个面的面积,它包括前面、后面、上面、下面、左面和右面。那么,下面请同学们对照着手中的长方体和正方体,标出它的六个面。

  (同位之间互相指着模型说一说。)

  师:好。请同学们观察手中的长方体,你从任意一个角度,对多能看到长方体的几个面?

  生:三个面。

  师:那么如果老师想看到六个面,应该怎么办呢?

  生:把它拆开。

  师:那么把它展开,是不是就能看到六个面了呢?

  生:是的。

  师:下面请同学们想象一下把长方体展开是什么图形?(出示课件)

  请同学们上讲台介绍自己展开后的图形,并分别指出它们所对应的面。对于不同的方法加以表扬。

  师:介绍长方体的展开图有多种。希望同学们课下动动脑筋想一想,想象展开后的图形。

  (师用课件展示长方体的展开图形,并质疑:观察展开图你发现了什么?)

  同学交流并回答问题。

  2、探究长方体表面积的计算方法

  师:正如大家所说所看到的长方体展开后的图形,相对的面完全隔开了,展开后每个长方体都有六个面。而且,我们知道长方体的对面面积相等,那么,求长方体的表面积就更加形象和直观了。由长方体变成了我们很熟悉的长方形。那么,你能求出它的`表面积吗?

  (出示课件,生相互交流并展示)

  生介绍自己的方法,对好的方法加以肯定。

  师:你是怎么想的?

  生1:我是想先求出长方体六个面的面积,把它们的结果相加起来,就是长方体的表面积。

  S表=S上+S下+S前+S后+S左+S右

  师:说得很好。同学们应该表扬一下。谁还有不同的方法呢?

  生2:由于长方体的对面相等,所以我只要求出一个面乘以2就可以了。我得出的公式是:

  长方体的表面积=长×宽×2+长×高×2+宽×高×2

  (师板书)

  师:这个方法很好,还有不同的方法吗?

  生3:我是先求出上面、前面、左面的面积之和,再乘以2,就可以求出长方体的表面积了。

  我得到的公式是:长方体的表面积=(长×宽+高×宽+高×长)×2

  (师板书)

  师:你真聪明,大家表扬一下。(大家鼓掌表扬)

  师出示课件,介绍长方体表面积的求法。

  3、应用长方体表面积计算公式

  师:请大家算一算,做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,需要多少平方厘米的硬纸板?(学生独立解答,指明学生回答)

  4、渗透正方体表面积计算方法

  (出示课件,学生独立思考并回答)

  师:这个是一个棱长为8厘米的正方体,求它的表面积。

  (学生独立思考并解答)

  三、应用所学知识 解决问题

  1、出示长方体礼盒的包装袋,并质疑,求几个面的面积。

  学生独立解答,集体订正,要求学生说出理由和依据。

  2、出示教材P18“试一试”,要求学生独立解答。

  让学生理解题意后,鼓励学生独立解答,小组交流,全班集体订正。

  3、师:做一个长方体的鱼缸需要求几个面的面积?(学生思考,指名回答)

  (出示课件)

  四、课堂小结

  师:同学们当遇到具体问题,要具体对待。数学知识与我们密不可分,我们要学会利用数学知识解决实际问题。这一节课,你学到了什么?和同学们交流一下。

  附:板书设计

  长方体与正方体的表面积

  长方体的表面积=长×宽×2+长×高×2+宽×高×2

  长方体的表面积=(长×宽+高×宽+高×长)×2

  正方体的表面积=棱长×棱长×6

《正方体的表面积》教学设计11

  教学目标

  1、通过操作观察,使学生知道长方体和正方体表面积的含义、

  2、初步学会长方体和正方体表面积的计算方法、

  3、培养学生的动手操作能力和空间观念、

  教学重点

  建立表面积概念,初步学会计算长方体和正方体的表面积、

  教学难点

  正确建立表面积的概念、

  教学步骤

  一、铺垫孕伏、

  1、长方体的特征是什么?

  2、正方体的特征是什么?

  指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

  二、探究新知、

  导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容、

  教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)

  师:那么怎样求这6个面的面积呢?

  拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的面积。)学生操作,师巡视。

  师:老师发现同学们观察的`真仔细,老师这里有一个长方体,谁能说出它的长、宽、高是多少?

  老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)

  同学们说的真好。你能把下面表格填上吗?看谁又快又对。

  师:长方体6个面的面积和又叫长方体的表面积。

  那么怎样求长方体的表面积呢?小组内讨论以下。(师出示课件)

  正方体的6个面都相等,请同学们继续观察:把一个正方体展开,怎么求它的表面积?(讨论)课件演示

  什么叫表面积呢?

  1、教师明确:长方体或正方体六个面的总面积叫做它的表面积、

  2、学生两人一组相互说一说什么是长方体的表面积、

  (二)长方体表面积的计算方法、【演示课件“长方体的表面积”】

  1、学生归纳:

  上下两个面大小相等,面积用长方体的长乘宽;

  前后两个面大小相等,面积用长方体的长乘高;

  左右两个面大小相等面积用长方体的高乘宽、

  2、教学例1、

  做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积、首先要找出每个面的长和宽、根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积、

《正方体的表面积》教学设计12

  〔教学内容〕

  教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。

  〔教材简析〕

  〔教学目标〕

  1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。

  2、让学生掌握并会运用所学知识解决实际问题。

  3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。

  〔教学重点〕

  根据实际情况判断出应该求出长方体或正方体的哪几个面之和。

  一、复习铺垫,导入新课:

  1、谈话:上节课我们学习了表面积,谁还记得?

  2、计算下面物体的表面积。

  (1)一个长方体长5厘米、宽6厘米、高12厘米。

  (2)一个正方体的棱长5分米。

  指名板演,集体订正。

  二、探索领悟,总结方法:

  谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。

  出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?

  1、 谈话:请同学们说一说鱼缸的样子。

  提问:求需要多少玻璃,就是求什么?

  使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。

  启发学生思考:

  根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?

  学生交流,指名口答。

  明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。

  2、列式解答:

  请学生独立完成。

  谈话:你能说说你列式的根据吗?让学生明确算式的含义。

  相机出示:

  5×3.5+5×3+3×3.5+3×3.5+5×3

  (5×3+5×3.5+3×3.5)×2-5×3

  3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。

  4、练一练:

  第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。

  第2题,做让学生先弄清楚需要计算几个面的.面积的和,然后独立完成,指名板演。

  完成后,集体订正,指名说出列式根据。

  三、巩固练习:

  练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。

  四、课堂作业:

  1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。

  2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。

  3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。

  4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。

  五、思考题:

  提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。

《正方体的表面积》教学设计13

  教学内容:

  长方体和正方体的表面积的概念(第33~34页例题1及P36,T1~3)

  教学目标:

  ① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。

  ② 会用求长方体表面积的方法解决生活中的简单问题。

  ③ 培养学生的分析能力,同时发展他们的空间观念。

  教学重点:长方体表面积的计算方法。

  教学难点:长方体表面积的计算方法。

  教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:

  一、预习提纲:

  1、预习教材第33~34页例题1。

  2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。

  3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。

  4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的.长和宽与长方体的长和宽有什么关系?

  5、练习:

  观察下面纸箱

  二、展示汇报:

  1、什么是长方体的长、宽、高?长方形的面积怎么计算?

  2、交流汇报。

  (1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:

  A、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。

  B、 每个面的长和宽与长方体的长和宽有什么关系?

  3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。

  学生齐读概念后,教师板书课题:长方体和正方体的表面积。

  (1)下面这个纸盒的表面积要怎么求呢?

  前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m

  左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m

  这个包装箱的表面积是:

  0.7×0.5×2+0.7×0.4×2+0.5×0.4×2

  =0.35×2+0.28×2+0.2×2

  =0.7+0.56+0.4

  =1.66m

  或者:

  (0.7×0.5+0.7×0.4+0.5×0.4)×2

  =(0.35+0.28+0.2)×2

  =0.83×2

  =1.66 m 答:至少要用1.66 m 硬纸板。

  (2)比较上面两种解法有什么不同?它们之间有什么联系?

  三、课堂小结。

  1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

  2、你发现长方体表面积的计算方法了吗?

  结论: = 长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  = (长×宽+长×高+宽×高)×2

  3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

  四、巩固练习。

  完成P34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?

  五、检测、反馈:

  (一)完成P36练习六T1~3。

  2、选择:

  (1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。

  A、 2×7×2+6×7×2+6×2

  B、(2×7+2×6+6×7)×2

  C、2×7+2×6+6×7

  3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)

  A、(1×1+1×3+1×3)×2

  B、1×1×2+1×3×4

  C、1×1×2+1×4×3

  讨论得出:底面周长×高=4个侧面的面积

  4、思考题:

  我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?

  板书设计:

  长方体和正方体的表面积的概念

  = 长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  = (长×宽+长×高+宽×高)×2

  课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。

《正方体的表面积》教学设计14

  教学目标

  1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法、

  2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念、

  教学重点

  表面积的意义、

  教学难点

  长方体表面积的计算方法、

  教学过程

  一、复习准备、

  1、说出长方形面积的计算公式、

  2、看图回答、

  (1)指出这个长方体的长、宽、高各是多少?

  (2)哪些面的面积相等?

  (3)填空、

  这个长方体上、下两个面的长是( )宽是( )、

  左、右两个面的长是( )宽是( )、

  前、后两个面的长是( )宽是( )、

  3、想一想、

  长方体和正方体都有几个面?(6个面)

  二、揭示课题、

  今天这节课我们就来学习和研究有关这6个面的一些知识、

  三、教学新课、

  (一)长、正方体表面积的意义、

  1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、

  “左”、“右”、“前”、“后”标在6个面上、

  2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)

  3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?

  教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、

  (板书:长方体和正方体的表面积、)

  (二)长方体表面积的`计算方法、

  例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?

  1、这题的问题,实际上就是要我们求什么?

  2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?

  3、学生分组讨论、

  解法(一)

  6×5×2+6×4×2+5×4×2

  = 60+48+40

  = 148(平方厘米)

  解法(二)

  (6×5+6×4+5×4)×2

  =(30+24+20)×2

  = 74×2

  = 148(平方厘米)

  4、比较上面两种解答方法有什么不同?它们之间有什么联系?

  解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)、

  四、巩固练习、

  1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)

  2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?

  五、课堂小结、

  通过解答例1和做一做,你发现长方体表面积的计算方法吗?

  结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2

  =(长×宽+长×高+宽×高)×2

  六、课后作业、

  1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?

  2、一个长方体的形状大小如下图、

  (1)它上、下两个面的面积分别是多少平方分米?

  (2)它前、后两个面的面积分别是多少平方分米?

  (3)它左、右两个面的面积分别是多少平方分米?

《正方体的表面积》教学设计15

  教学目标:

  1、知识性目标:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。

  2、探究性目标:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。

  3、情感性目标:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

  教具、学具准备:

  长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。

  教学设计理念:

  学生作为学习的主体,教师应积极创设各种有利于开发学生创造思维的教育情境,引导学生发现问题,分析矛盾,独立思考和相互启发。因此在教学设计中应加强对学生活动的设计,使活动的内在结构以及活动之间的结构有利于培养学生敢于求知、求异的探索态度,善于求新、设疑、迁移的学习能力,发散性思维和创造性动手操作能力。其次、要从学生的生活经验出发,用丰富多彩的亲历活动来充实教学过程,让学生在活动中运用多种知识和技能创造性地学习和实践。因此在教学设计中,要注意选取符合儿童的年龄特征和经验背景的活动,按由近及远、由浅入深、由具体到抽象、由简单到复杂。第三、教学内容要有利于学生的探究活动的开展,有利于学生提出问题、进行猜想、假设并制定科学探究活动计划,有利于学生的观察、实验、记录、统计等,有利于学生思索并得出结论。第四、探究活动要在情感态度上与儿童贴近,在一定程度上能够调动儿童参与活动的积极性。

  教学过程:

  (一)创设活动情景,复习导入。

  1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!

  2、小组合作,利用长、正方形纸板动手制作长方体纸盒。

  3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。

  生1:长方体有6个面、12条棱、8个顶点。

  生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。

  生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。

  生4:拿着长方体指出它的长、宽、高。

  师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)

  简析:此环节为学生创设了充分的想象空间,让学生在动手操作中运用所学知识,巩固所学知识,发展了学生的思维,并使学习数学成了一种乐趣,从而唤起了学生观察、探究、发现数学规律的欲望,为学生学习新知作了铺垫,使学生顺利进入下个环节的学习。

  (二)自主探究,合作交流。

  1、教学长方体、正方体表面积的概念

  师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用上、下、左、右、前、后标明六个面。

  师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?

  生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。

  师:有几组面积相等的长方形?

  生:总共有三组面积相等的长方形。

  师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)

  师:展开后的每个面是什么形状的?有几个相等的面?

  生:每个面是正方形的,有6个相等的面。

  师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。(板书课题:长方体和正方体的表面积、长方体表面积的计算)

  简析:为了使学生更好的理解表面积的概念,通过让学生亲自操作,认真观察,使其更清楚的看出长方体相对面的面积相等,也为下面学习计算长方体的表面积做好准备。

  2、教学长方体、正方体表面积的计算

  师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。

  生合作探究计算方法,汇报如下:

  生1:我们组列式是65+65+63+63+53+53,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。

  生2:我们组列式为652+632+532。我用652求上下两个面的面积;用632求出前后两个面的面积;用532求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。

  生3:我们组列式是(65+63+53)2。我用65求出上面;63求出前面;53求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。

  生4:我们组列式是(5+3+5+3)6+532。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;532求的是左右两个面的面积。最后再求出它们的和。

  生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:634+332,我用634求的是上下、前后四个面的面积;用332求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。

  师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。

  师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

  生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。

  生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。

  简析:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生运用自己的长方体纸盒,通过讨论、测量、计算等方法,解决实际问题,降低了理解的难度,也进一步激发了学习数学的兴趣,增强了合作和探求知识的'意识。在此环节中学生不仅自己主动经历表面积的计算过程,感受到了表面积的意义,而且也使自己探索到解决问题的方法,加深了学生对知识的理解,培养了学生的创新能力。

  (三)巩固练习,深化理解。

  1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。

  2、生独立计算。

  3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)

  简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。

  (四)联系实际、学以致用。

  1、师:请同学们拿出正方体药盒,帮助工人师傅计算一下要加工100个这样的药盒,至少要用多少纸板?

  2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)

  3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)

  简析:数学学习,从理解知识到具体应用,解决实际问题,这是一次飞跃。本节课所设计的练习题都是学生熟悉的生活实际物品,灵活应用长方体和正方体表面积的意义和计算方法解题,让学生运用所学知识解决实际问题在应用中发展智能。体会到生活中处处有数学,还了数学的本来面目。

  (五)课堂总结

  师:这节课你有什么收获?

  简析:归纳本节课的基础知识和基本技能,总结交流学习方法,对知识的掌握及今后的学习相得益彰。

  反思:

  学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历—和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。

《《正方体的表面积》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深写手 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【《正方体的表面积》教学设计】相关文章:

《长方体和正方体表面积》教学设计05-11

《长方体和正方体的表面积》教学设计05-31

《长方体和正方体的表面积》数学设计06-28

《长方体和正方体的表面积》的数学设计12-14

圆柱的表面积教学设计02-18

圆柱表面积的教学设计05-19

《圆柱的表面积》教学设计07-25

《圆柱的表面积》教学设计07-03

《圆柱的表面积》教学设计07-22

文章代写服务

资深写手 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

《正方体的表面积》教学设计

  作为一位杰出的教职工,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的《正方体的表面积》教学设计,欢迎大家分享。

《正方体的表面积》教学设计

《正方体的表面积》教学设计1

  教学目标:

  1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

  教学重点难点:

  长方体和正方体表面积的含义及其计算方法的推导过程。

  教学准备:

  长方体、正方体模型。

  教学过程:

  一、猜测导入

  出示两个纸盒(一个长方体、一个正方体)。

  提问:长方体和正方体有哪些特征?

  谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?

  有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

  二、探究新知

  1、引导探究长方体表面积的.计算方法。

  (1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

  (2)学生独立列式,指名汇报,并根据学生回答进行板书。

  解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

  解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

  答:至少要用148平方厘米的硬纸板。

  (3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?

  2、自主探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?

  (2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

  (3)组织交流反馈。

  3、揭示表面积的含义。

  谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?

  揭示:长方体或正方体6个面的总面积,叫做它的表面积。

  (板书课题:长方体和正方体的表面积)

  三、练习巩固

  完成课本“练一练”以及练习四第一、二、五题。

  四、全课小结

  谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?

  五、布置作业

  1、做练习四第三、四题。

《正方体的表面积》教学设计2

  【教学内容】西师版第十册第39页例1。

  【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。

  2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。

  4让学生体会所学知识在实际中的应用价值。

  【教学重点】

  长方体、正方体表面积的计算方法。

  【教学难点】

  确定长方体每一个面的长和宽。

  【教具学具】

  教具:长方体、正方体纸盒(可展开)。

  学具:长方体、正方体纸盒、剪刀。

  【教学过程】

  一、复习引入

  师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?

  出示一个长方体,指名摸它的表面。

  师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。

  二、探究学习

  1探索长方体表面积的计算方法

  出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?

  4人小组合作完成这个长方体表面积的计算。

  汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。

  生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面

  师:你能把这种求表面积的方法归纳一下吗?

  生:长×宽×2+长×高×2+宽×高×2。

  生2:我们组是把6个面的面积分别算出来后再相加。

  生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。

  师:为什么求出这3个面的面积和,再乘2就可以了?

  生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。

  师:你能把这种求表面积的方法归纳一下吗?

  生:(长×宽+长×高+宽×高)×2。(师板书)

  师:观察真仔细,归纳能力真强。

  师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。

  2探索正方体表面积的计算方法

  师:通过大家的'积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?

  出示一个正方体,让学生自主探索方法。

  汇报交流。

  生1:我是把6个面的面积加起来。

  生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。

  生3:我觉得只要求出一个面的面积再乘6就可以了。

  师:能给大家讲讲你的想法吗?

  生:正方体6个面的面积都是相同的。

  师:你能把这种求表面积的方法归纳一下吗?

  生:正方体的表面积=棱长×棱长×6。(师板书)

  三、巩固练习

  1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。

  2练习十第3题。先独立完成,再与同桌交流自己的算法。

  四、课堂小结

  通过这节课的讨论学习,你有什么收获和体会?

《正方体的表面积》教学设计3

  教学目标:

  1、建立表面积概念。

  2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

  3、运用公式实际应用,并提升学生的数学思维能力。

  教学重点:

  1、长方体表面积公式的求法探究。

  2、公式的实际应用。

  教学难点:

  长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。

  教具、学具的准备:

  长方体盒、正方体盒、桔子、长方体展开图、课件

  教学研究过程:

  (一)回忆长方体、正方体特征,重建表象。

  1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?

  2、生:汇报

  (长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)

  (正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)

  3、师小结并引出课题

  同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)

  (二)建立表面积概念,认识表面积。

  1、师:看到这个课题,你最想知道或最想了解什么?

  2、生交流:什么是表面积?

  怎样求表面积?

  求表面积在生活中有什么用途?

  表面积和以前所学的面积有什么不同?

  3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?

  生摸一摸,说一说。

  4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的是哪里,那正方体呢?

  5、生指一指,摸一摸,说一说。

  (三)探求长方体表面积计算方法、正方体表面积计算方法。

  1、师:我们知道什么是表面积,如何来求它们的表面积呢?

  小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。

  (师在小组间巡视)

  2、生交流汇报各种求长方体表面积的方法。

  3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)

  长方体表面积=(长宽+长高+宽高)2

  S=2(ab+ah+bh)

  4、课件展示:通过课件的展示,让学生直观感受长方体

  表面积方法的研究过程。

  5、生总结:正方体表面积计算方法(含字母)

  正方体表面积=棱长棱长6

  S=6a2

  (四)基本反馈练习

  1、计算一香皂盒的表面积

  师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,请你计算这个盒的表面积。

  生试做,并指生上台板演。

  2、课件出示(三个立体图形),分别计算它们的表面积。

  3、生在实物投影仪前讲解交流。

  (五)解释应用(课件出示题目)

  1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?

  a、生交流思路

  b、列式。

  2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?

  a、生试做

  b、交流思路

  3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?

  a、小组内交流思路

  b、全班交流解题策略

  c、生计算

  3、谈收获或体会

  通过这节课的研究与交流,你的收获或体会是什么?

  反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。

  框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。

  框架二:建立表面积概念

  在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。

  框架三:探求表面积计算方法

  在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。

  框架四:巩固练习

  公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。

  框架五:解释应用

  把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。

  框架六:谈本节课的收获

  孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多人认为枯燥的学科中产生丰富的情感,激发起孩子们热爱数学的美好情感。

  在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的表面积。对问题的'思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。

  这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。

《正方体的表面积》教学设计4

  教学内容

  教材第89 页:长方体和正方体的表面积

  教学目标

  1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。

  2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

  3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

  教学重难点

重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。

  难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。

  教学准备

  教师:多媒体课件,长方体纸盒。

  学生:长方体纸盒

  教学设计

  一、复习铺垫

  同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?

  生答。(教师强调面的知识)

  二、创设情境 、引入问题

  老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?

  生:长方体纸盒的表面积。

  师板书课题:长方体和正方体的表面积

  师:看了课题同学们想问什么?

  师生共议研究课题:

  (1)什么叫长方体和正方体的表面积?

  (2)怎样求长方体和正方体的表面积?

  三、合作探究、学习新知

  1. 探索长方体表面积的计算方法。

  什么叫长方体的表面积呢?请看大屏幕。

  多媒体出示长方体展开图。

  师:同学们看完后有什么想说的?

  生:围成长方体的是6个长方形。

  生:长方体的表面积就是展开后6个面的总面积。

  师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。

  师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?

  多媒体出示长方体粘合图

  师:同学们看完后,又想到了什么呢?

  生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。

  生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。

  〔着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕

  多媒体出示长方体图形

  师:现在同学们能求出它的表面积吗?

  生:不能。

  师:为什么?

  生:没有数据。

  师课件出示数据,引导学生把数据放到长方体相应的位置。

  2.探究每个面的长和宽与长方体的长、宽、高有什么关系?

  师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?

  多媒体展示,引导学生讨论:

  上、下每个面的长和宽分别是长方体的()和();

  前、后每个面的长和宽分别是长方体的`()和(); 左、右每个面的长和宽分别是长方体的()和()。

  小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:

  上、下每个面的长和宽分别是长方体的(长)和(宽);

  前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。

  3、尝试计算

  问:现在你能求出做这纸盒至少需要多大面积的纸板吗?

  学生尝试计算,出示活动要求:

  (1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。

  (2) 把自己的计算方法和小组内的同学交流。

  教师参与学生的活动。

  反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问

  学生板演后说明想法:

  生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。

  生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。

  教师注意引导学生语言叙述的完整性,准确性。

  师多媒体展示学生的汇报结论。

  指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

  多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

  4探究正方体的表面积计算方法。

  多媒体出示:棱长为5厘米的正方体的表面积是多少?

  学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.

  四,巩固新知、拓展运用

  1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。

  2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。

  3、课件出示“聪明的你”,引导学生注意:

  (1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);

  (2)计算时,关键是找准数据。

  学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。

  4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。

  五、课堂小结

  通过学习,你有哪些收获?还有那些不懂的问题?

《正方体的表面积》教学设计5

  教学目标:

  1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。

  2、进一步发展学生的空间观念和空间想象能力。

  3、密切数学与生活的联系,提高学生学习数学的学习兴趣。

  教学重、难点:

  能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。

  教学准备:

  多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。

  教学过程:

  一、复习长方体和正方体的特征

  师:长方体有什么特征?

  (长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)

  正方体呢?

  (正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。)

  师最后根据学生的口答小结。

  二、复习长方体和正方体的.表面积的计算方法

  1、复习长方体每个面的面积的计算方法。

  提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?

  学生口答,课件及时反馈。

  2、复习长方体和正方体表面积、底面积和侧面积的计算方法。

  课件依次出示长方体和正方体,逐个提问。课件及时反馈。

  3、求长方体和正方体的表面积(只列式不计算)。

  第一个是长方体,6个面都是长方形;

  第二个是长方体,有2个面是正方形,其余4个面是长方形;

  第三个是正方体。

  先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。

  三、复习长方体和正方体表面积的实际应用

  1、长方体和正方体表面积的实际应用的基础练习。

  (1)出示一组物体的图片。

  师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的同学互相说一说。

  (2)计算无盖的长方体玻璃鱼缸的玻璃面积。

  先审题:要求玻璃面积,实际是求长方体哪几个面的面积?

  再口答算式,并计算。

  (3)计算火柴盒内盒和外盒的面积。

  先独立思考,再集体交流。

  根据学生口答板书:

  火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)

  火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)

  (4)选择题

  (1)1、一个通风管的横截面是边长0、2米的正方形,长2、5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?()

  A、0、2×2、5×50

  B、0、2×0、2×2、5×50

  C、0、2×2、5×4×50

  还可以怎样计算?

  展示长方体通风管展开成一个长方形的过程,帮助学生思考。

  还可以列式为:0、2×4×2、5×50

  (2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米?()

  A、20×10+(20×2+10×2)×2

  B、20×10+20×2+10×2

  C、(20×10+20×2+10×2)×2

  (3)一个棱长3分米的正方体,在它的顶点处切下一个棱长1分米的小正方体,表面积和原来相比()。

  A、减少了

  B、不变

  C、增加了

  (4)一个正方体的棱长之和是24厘米,它的表面积是()平方厘米。

  A、6B、48C、24

  (5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大()倍。

  A、3B、6C、9

  (6)把两个正方体拼成一个长方体,它的表面积减少()面的面积。

  A、1B、2C、3

  2、拓展练习。

  (1)学校大门前有6级台阶,每级台阶长6米,宽0、4米,高0、2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?

  (2)设计包装纸。

  a、把两包抽纸拼在一起有几种拼法?哪种最省包装材料?

  b、把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?

  3、思考题。

  下图表示用棱长1厘米的正方体摆成的物体。(书第18页)

  (1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。

  (2)这个物体的表面积是多少平方厘米?

  (3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?

  四、课堂作业

  1、小区大门前有8级台阶,每级台阶长5米,宽0、4米,高0、2米。

  (1)8级台阶一共占地多少平方米?

  (2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?

  2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。

  (1)粉刷的面积是多少平方米?

  (2)如果每平方米需工料费1、5元,粉刷工料费共需多少元?

《正方体的表面积》教学设计6

  教学目标

  (三维)

  1、根据正方体的特征,推导出正方体表面积的计算方法。

  2、学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。

  3、感受数学与生活的密切联系,体会数学学习的价值。

  教学

  重点与难点

  教学重点:正方体表面积的计算方法。

  教学难点:解决生活中有关长方体、正方体表面积的计算问题。

  教学

  方法与手段

  教学方法:观察法、演示法。

  教学手段: 迁移类推-自己发现-总结方法。计算正方体的表面积是在计算长方体表面积的基础上进行教学的。所以把迁移类推的机会留给学生,让学生自己去发现,类推出正方体表面积的计算方法,以培养学生的逻辑思维能力和再创造能力。

  使用教材的构想

  在操作与观察中,将知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成正方体表面积的表象,建立概念,以动促思,引导学生在探索中发现和总结出计算正方体的方法,让学生充分发表自己的见解,在多种算法的交流中,选择适合自己的算法,培养创新意识。

  第二课时:正方体表面积的计算

  教学内容:教材第35页例2及练习六的相关题目。

  教学准备:正方体展开图。生:正方体纸盒。

  教学过程:

  一、复习引入

  1、什么是长方体的表面积?

  2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)

  3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?

  如果给你正方体一条棱的.长度,你能算出它的表面积是多少吗?今天,这节课我们就来学习正方体表面积的计算方法。[板书课题]

  二、实践探索

  1、教学例2

  看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?

  要想知道包装这个礼盒至少要多少包装纸,也就是求什么?

  “至少”是什么意思?

  学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)

  2、P35页做一做

  让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。

  作业设计:

  P36第6题

  P37第7题

  P36第4、5、6题。

  板书设计:

《正方体的表面积》教学设计7

  教学内容:

  书本24页例2。

  教学目标:

  (1)通过动手操作,使学生理解表面积的意义,初步掌握长方体和正方体的表面积的计算方法。

  (2)使学生会运用表面积的意义,解决生活中的简单问题。

  (3)运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

  教具准备:

  多媒体课件、长方体和正方体纸盒。

  学具准备:

  长方体和正方体纸盒各一个

  教学过程:

  (一)复习

  1、口算。

  0.25×4= 0.125×8= 4.5+5.5= 1.2—0.2=

  8.1÷9= 0.42×6= 1.8+2.2= 0.2×5=

  2、填空

  (1)长方体有()个面,()条棱,()个顶点。

  (2)长方体相对的两个面的面积(),相对的棱的长度。()。

  (3)正方体的()个面都是()形,它们的面积都(),十二条棱的长度都()。

  (4)相交于一个顶点的三条棱的长度分别叫做长方体的()。

  (5)长、宽、高都相等的长方体叫做(),也叫做()。

  (二)探讨新课

  1、什麽叫长方体的表面积?长方体的表面积=()=()。

  2、什麽叫长方体的'表面积?小组讨论正方体的计算方法。

  3、汇报小结:

  (1)正方体6个面的面积总和,叫做它的表面积。

  (2)正方体的表面积=棱长×棱长×6。

  (3)质疑:棱长×棱长能算出什么?再×6又算出什么?

  (4)计算长方体的表面积需要哪些条件?计算正方体的表面积需要哪些条件?

  (5)尝试练习:例:一个正方体纸盒,棱长3厘米,求它的表面积。

  (三)巩固练习

  1、一个正方体的棱长是1.2分米,求它的表面积。

  2、一个正方体金鱼缸(无盖),棱长是5分米,做这个金鱼缸至少需要多少平方分米玻璃?

  3、一个正方体饼干盒的棱长是3.5分米,在它的周围贴上商标纸(上下面不贴),贴商标纸的面积有多少平方分米?

  4、填空

  (1)一个正方体的表面积是54平方米,它的一个面的面积是()平方米。

  (2)一个正方体的棱长总和是48分米,它的表面积是()平方分米。

  (3)一个长方体的长是4分米,宽是2分米,高是1分米,它的表面积是()平方厘米。

  (四)全课小结

  长方体的表面积=长×宽×2 +长×高×2 +宽×高×2=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  教学反思:

  本节课教学《正方体的表面积》是在掌握正方体的特征和理解长方体的表面积计算的基础上进行的,本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。

  1、让学生运用长方体的表面积计算方法迁移到正方体。培养迁移能力。

  2、利于正方体的特征小组讨论正方体的表面积的计算方法,培养空间思维能力。

  3、巧编习题,以“练”促思。学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维。

  本节课也有不足之处,练习的强度还要提高。

《正方体的表面积》教学设计8

  教学目标:

  结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

  知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

  3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

  教学重点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学难点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学媒体

  教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

  学具:长方体、正方体纸盒、剪刀。

  教学过程

  一、复习准备。

  (一)口答填空。

  1、长方体有( )个面,一般都是( ),相对的面的( )相等;

  2、正方体有( )个面,它们都是( ),正方形各面的( )相等;

  3、这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

  4、这是一个( ),它的棱长是( )厘米,它的'棱长之和是( )厘米。

  (二)说一说长方体和正方体的区别?

  教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

  二、学习新课。

  (一)长方体和正方体表面积的意义。

  1、教师提问:什么叫做面积?

  长方体有几个面?正方体有几个面?

  (用手按前、后,上、下,左、右的顺序摸一遍)

  2、教师明确:这六个面的总面积叫做它的表面积。

  3、学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

  4、教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

  (二)长方体表面积的计算方法

  1、学生归纳:

  上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

  前后两个面大小相等,它是由长方体的长和高作为长和宽的;

  左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

  2、教师提问:想一想,长方体的表面积如何计算?(学生讨论)

  老师板书:

  上下面:长×宽×2

  前后面:长×高×2

  左右面:高×宽×2

  3、练习解答。

  做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  4、巩固练习。

  一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?

  教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

  学生:应该少算上边的一面。

  列式:4×3+4×2.5×2+3×2.5×2

  (三)正方体表面积的计算方法

  1、教师提问:正方体的表面积如何求吗?

  学生:棱长×棱长×6

  2、试解例2。

  一个正方体纸盒,棱长3厘米,求它的表面积。

  32×6

  =9×6

  =54(平方厘米)

  答:它的表面积是54平方厘米。

  教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

  学生:少一个面。列式:32×5

  教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

  3、巩固练习:一个正方体的面积是1.2分米,求它的表面积。

  三、巩固反馈。

  1、一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?

  2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?

  3、判断正误,并说明理由。

  (1)长方体的三条棱分别叫它的长、宽、高。( )

  (2)一个棱长4分米的正方体,它的表面积是:42×6=48(平方分米)( )

  (3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小。( )

  四、课堂总结。

  什么是长、正方体的表面积?长、正方体的表面积如何计算?

《正方体的表面积》教学设计9

  教学内容

  教材第33页至第34页例1,完成“做一做”和练习六第1题至第3题。

  教学目标

  知识目标

  1.通过动手操作,观察长方体和正方体的展开图,理解长方体和正方体表面积的意义。

  2.根据长方体展开图,能说出每个面的长、宽与长方体的长、宽、高的关系,会计算长方体的表面积。

  能力目标

  1.培养学生自我探索的能力。

  2.结合具体情况能灵活运用表面积的计算方法,解决生活中的实际问题。

  情感目标

  培养和发展学生的空间观念。

  教学重点

  掌握长方体表面积的计算方法。

  教学难点

  长方体每个面的长和宽与长方体的长、宽、高的关系。

  媒体准备

  课件、长方体和正方体纸盒各一个、剪刀、牙膏盒。

  教学过程

一、巩固旧知,重建表象

  师:上两节课我们学习了长方体和正方体的认识,谁来说说长方体、正方体有哪些特征?(长方体有6个面,……正方体6个面都是完全相等的正方形……)

  二、实物导入、揭示课题

  在我们的日常生活中有许多长方体、正方体纸盒(如牙膏盒、粉笔盒等),工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。板书课题“长方体和正方体的表面积”。

  提问:当你看了课题以后,你想知道什么?

  三、演示操作、建立概念

  1.初步认识长方体的表面积。

  大家拿出长方体纸盒摸一摸,你能摸到几个面?(6个)

  师:把这个长方体的纸盒沿着棱剪开是什么形状的呢?大家想看看吗?教师示范操作。

  沿着棱把长方体展开,你有什么发现?

  1、原来的立体图形变成了平面图形。

  2、长方体的外表展开后是由6个长方形组成的。

  请同学们观察一下,展开前长方体的每个面,在展开后是哪个面?分别用上、下、前、后、左、右标明。

  在标的过程中你有什么发现?(前后两个面的`面积相等……)

  2.初步认识正方体的表面积。

  教师出示正方体粉笔盒实物图,把剪好的正方体的展开图展示给学生看,问:你又发现了什么?

  通过观察和动手操作,谁知道什么叫做长方体或正方体的表面积?

  课件出示:长方体和正方体6个面的总面积,叫做它的表面积。

  四、学习新知,探索规律

  1、明确长方体每个面的长和宽与长方体长、宽、高的关系

  问:既然长方体六个面的总面积叫做它的表面积,那么怎样计算长方体的表面积呢?

  同学们观察长方体然后讨论:长方体每个面的长和宽与长方体长、宽、高有什么关系?

  2、探求表面积的计算方法

  出示课件,师:做这样一个牙膏盒至少需要多少硬纸板,就是求什么呢?(求牙膏盒的表面积)

  请大家独立完成,如有困难可合作完成。

  找学生把不同的方法写到黑板上,并说一说每一步求的是哪个面的面积?

  比较几种方法有什么不同?他们之间有什么联系?

  课件出示:长方体的表面积 =长×宽×2+长×高×2+宽×高×2

  长方体的表面积 =(长×宽 +长×高 +宽×高)×2

  小结:我们在求长方体的表面积时,一定要求6个面的面积,方法有多种,用喜欢方法做就可以了。

  师:要算长方体的表面积,我们必须知道它的什么?(长、宽、高)

  五、巩固练习,拓展提升

  1、做一个微波炉的包装箱(如右图),至少要用多少平方米的硬纸板?

  引导学生求微波炉包装的面积,实际上是求包装盒这个长方体的表面积。

  师:大家注意到“至少”二字了吗?谁能说说为什么要加上这两个字?

  (做纸板箱的时候要有粘合处,这里的“至少”指的是粘合处不算,就光算六个面的面积之和就好了。)

  2、亮亮家要给一个长0.75米,宽0.5米,高1.6米的简易衣柜换布罩(如右图,没有底面)至少需要用布多少平方米?

  六、课堂小结 想象延伸

  小结:同学们,刚才我们学习了什么叫长方体和正方体的表面积,怎样计算长方体的表面积?那么在生活中,我们还要根据具体的情况来采取正确的解答问题的方法,比如说有的时候需要求6个面,有的时候只要求5个面、甚至只要求其中的4个面。

  板书设计

  长方体和正方体的表面积

  上、下:长×宽

  前、后:长×高

  左、右:宽×高

《正方体的表面积》教学设计10

  教学目标:

  1、知识与技能:学生建立表面积概念,会求长方体与正方体的表面积。

  2、过程与方法:小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

  3、情感、态度与价值观:运用公式实际应用,并提升学生的数学思维能力。

  教学重点:

  1、长方体表面积公式的求法探究。

  2、公式的实际应用。

  教学难点:

  长方体、正方体的表面积公式探究方法。

  教具、学具的准备:长方体盒、正方体盒、长方体展开图、课件

  教学过程

  一、创设情境 导出新课

  师:同学们,告诉大家一个好消息,今天是我们学习的好伙伴淘气的十岁生日,他的好朋友笑笑要送给他一份生日礼物。这个礼物准备好了,可是老师对这个包装盒却不太满意,你能帮助笑笑出一个好主意吗?

  生:可以在包装盒外面包一层彩纸。

  师:老师也是这么想的。看,老师用彩纸将这个包装盒包装了一下,请看(出示课件)。

  师:漂亮吗?

  生:漂亮。

  师:现在新问题又出现了。要把这个包装盒包装好,需要多大的彩纸呢?要求多大的彩纸就是求什么呢?

  生:求六个面的面积之和。

  师:对,求六个面的面积之和就是求长方体的表面积。今天,我们就来研究长方体的表面积.(板书课题)

  二、引导探索 初步感知

  1、长方体表面积的意义

  师:同学们,刚刚我们对长方体礼盒的哪些部分进行了包装?

  生:它的六个面。

  师:而且,刚刚我们知道的长方体六个面的面积之和就是长方体的表面积,那么,你是如何理解长方体的表面积的呢?(师提问)

  生:就是求六个面的总面积。(出示课件)

  师:下面,就请同学们拿出自己准备的长方体,仔细地观察,长方体的六个面的面积之和包括哪些?(同学之间互相交流)

  师对照长方体讲解表面积的含义。(出示课件,学生齐读长方体表面积的意义)

  师:那么正方体呢?(请同学对照正方体说一说)

  师:他说得对不对呢?

  生:对。

  师:正方体的表面积也就是六个面的面积,它包括前面、后面、上面、下面、左面和右面。那么,下面请同学们对照着手中的长方体和正方体,标出它的六个面。

  (同位之间互相指着模型说一说。)

  师:好。请同学们观察手中的长方体,你从任意一个角度,对多能看到长方体的几个面?

  生:三个面。

  师:那么如果老师想看到六个面,应该怎么办呢?

  生:把它拆开。

  师:那么把它展开,是不是就能看到六个面了呢?

  生:是的。

  师:下面请同学们想象一下把长方体展开是什么图形?(出示课件)

  请同学们上讲台介绍自己展开后的图形,并分别指出它们所对应的面。对于不同的方法加以表扬。

  师:介绍长方体的展开图有多种。希望同学们课下动动脑筋想一想,想象展开后的图形。

  (师用课件展示长方体的展开图形,并质疑:观察展开图你发现了什么?)

  同学交流并回答问题。

  2、探究长方体表面积的计算方法

  师:正如大家所说所看到的长方体展开后的图形,相对的面完全隔开了,展开后每个长方体都有六个面。而且,我们知道长方体的对面面积相等,那么,求长方体的表面积就更加形象和直观了。由长方体变成了我们很熟悉的长方形。那么,你能求出它的`表面积吗?

  (出示课件,生相互交流并展示)

  生介绍自己的方法,对好的方法加以肯定。

  师:你是怎么想的?

  生1:我是想先求出长方体六个面的面积,把它们的结果相加起来,就是长方体的表面积。

  S表=S上+S下+S前+S后+S左+S右

  师:说得很好。同学们应该表扬一下。谁还有不同的方法呢?

  生2:由于长方体的对面相等,所以我只要求出一个面乘以2就可以了。我得出的公式是:

  长方体的表面积=长×宽×2+长×高×2+宽×高×2

  (师板书)

  师:这个方法很好,还有不同的方法吗?

  生3:我是先求出上面、前面、左面的面积之和,再乘以2,就可以求出长方体的表面积了。

  我得到的公式是:长方体的表面积=(长×宽+高×宽+高×长)×2

  (师板书)

  师:你真聪明,大家表扬一下。(大家鼓掌表扬)

  师出示课件,介绍长方体表面积的求法。

  3、应用长方体表面积计算公式

  师:请大家算一算,做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,需要多少平方厘米的硬纸板?(学生独立解答,指明学生回答)

  4、渗透正方体表面积计算方法

  (出示课件,学生独立思考并回答)

  师:这个是一个棱长为8厘米的正方体,求它的表面积。

  (学生独立思考并解答)

  三、应用所学知识 解决问题

  1、出示长方体礼盒的包装袋,并质疑,求几个面的面积。

  学生独立解答,集体订正,要求学生说出理由和依据。

  2、出示教材P18“试一试”,要求学生独立解答。

  让学生理解题意后,鼓励学生独立解答,小组交流,全班集体订正。

  3、师:做一个长方体的鱼缸需要求几个面的面积?(学生思考,指名回答)

  (出示课件)

  四、课堂小结

  师:同学们当遇到具体问题,要具体对待。数学知识与我们密不可分,我们要学会利用数学知识解决实际问题。这一节课,你学到了什么?和同学们交流一下。

  附:板书设计

  长方体与正方体的表面积

  长方体的表面积=长×宽×2+长×高×2+宽×高×2

  长方体的表面积=(长×宽+高×宽+高×长)×2

  正方体的表面积=棱长×棱长×6

《正方体的表面积》教学设计11

  教学目标

  1、通过操作观察,使学生知道长方体和正方体表面积的含义、

  2、初步学会长方体和正方体表面积的计算方法、

  3、培养学生的动手操作能力和空间观念、

  教学重点

  建立表面积概念,初步学会计算长方体和正方体的表面积、

  教学难点

  正确建立表面积的概念、

  教学步骤

  一、铺垫孕伏、

  1、长方体的特征是什么?

  2、正方体的特征是什么?

  指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

  二、探究新知、

  导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容、

  教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)

  师:那么怎样求这6个面的面积呢?

  拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的面积。)学生操作,师巡视。

  师:老师发现同学们观察的`真仔细,老师这里有一个长方体,谁能说出它的长、宽、高是多少?

  老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)

  同学们说的真好。你能把下面表格填上吗?看谁又快又对。

  师:长方体6个面的面积和又叫长方体的表面积。

  那么怎样求长方体的表面积呢?小组内讨论以下。(师出示课件)

  正方体的6个面都相等,请同学们继续观察:把一个正方体展开,怎么求它的表面积?(讨论)课件演示

  什么叫表面积呢?

  1、教师明确:长方体或正方体六个面的总面积叫做它的表面积、

  2、学生两人一组相互说一说什么是长方体的表面积、

  (二)长方体表面积的计算方法、【演示课件“长方体的表面积”】

  1、学生归纳:

  上下两个面大小相等,面积用长方体的长乘宽;

  前后两个面大小相等,面积用长方体的长乘高;

  左右两个面大小相等面积用长方体的高乘宽、

  2、教学例1、

  做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积、首先要找出每个面的长和宽、根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积、

《正方体的表面积》教学设计12

  〔教学内容〕

  教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。

  〔教材简析〕

  〔教学目标〕

  1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。

  2、让学生掌握并会运用所学知识解决实际问题。

  3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。

  〔教学重点〕

  根据实际情况判断出应该求出长方体或正方体的哪几个面之和。

  一、复习铺垫,导入新课:

  1、谈话:上节课我们学习了表面积,谁还记得?

  2、计算下面物体的表面积。

  (1)一个长方体长5厘米、宽6厘米、高12厘米。

  (2)一个正方体的棱长5分米。

  指名板演,集体订正。

  二、探索领悟,总结方法:

  谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。

  出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?

  1、 谈话:请同学们说一说鱼缸的样子。

  提问:求需要多少玻璃,就是求什么?

  使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。

  启发学生思考:

  根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?

  学生交流,指名口答。

  明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。

  2、列式解答:

  请学生独立完成。

  谈话:你能说说你列式的根据吗?让学生明确算式的含义。

  相机出示:

  5×3.5+5×3+3×3.5+3×3.5+5×3

  (5×3+5×3.5+3×3.5)×2-5×3

  3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。

  4、练一练:

  第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。

  第2题,做让学生先弄清楚需要计算几个面的.面积的和,然后独立完成,指名板演。

  完成后,集体订正,指名说出列式根据。

  三、巩固练习:

  练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。

  四、课堂作业:

  1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。

  2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。

  3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。

  4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。

  五、思考题:

  提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。

《正方体的表面积》教学设计13

  教学内容:

  长方体和正方体的表面积的概念(第33~34页例题1及P36,T1~3)

  教学目标:

  ① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。

  ② 会用求长方体表面积的方法解决生活中的简单问题。

  ③ 培养学生的分析能力,同时发展他们的空间观念。

  教学重点:长方体表面积的计算方法。

  教学难点:长方体表面积的计算方法。

  教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:

  一、预习提纲:

  1、预习教材第33~34页例题1。

  2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。

  3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。

  4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的.长和宽与长方体的长和宽有什么关系?

  5、练习:

  观察下面纸箱

  二、展示汇报:

  1、什么是长方体的长、宽、高?长方形的面积怎么计算?

  2、交流汇报。

  (1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:

  A、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。

  B、 每个面的长和宽与长方体的长和宽有什么关系?

  3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。

  学生齐读概念后,教师板书课题:长方体和正方体的表面积。

  (1)下面这个纸盒的表面积要怎么求呢?

  前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m

  左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m

  这个包装箱的表面积是:

  0.7×0.5×2+0.7×0.4×2+0.5×0.4×2

  =0.35×2+0.28×2+0.2×2

  =0.7+0.56+0.4

  =1.66m

  或者:

  (0.7×0.5+0.7×0.4+0.5×0.4)×2

  =(0.35+0.28+0.2)×2

  =0.83×2

  =1.66 m 答:至少要用1.66 m 硬纸板。

  (2)比较上面两种解法有什么不同?它们之间有什么联系?

  三、课堂小结。

  1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

  2、你发现长方体表面积的计算方法了吗?

  结论: = 长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  = (长×宽+长×高+宽×高)×2

  3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

  四、巩固练习。

  完成P34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?

  五、检测、反馈:

  (一)完成P36练习六T1~3。

  2、选择:

  (1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。

  A、 2×7×2+6×7×2+6×2

  B、(2×7+2×6+6×7)×2

  C、2×7+2×6+6×7

  3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)

  A、(1×1+1×3+1×3)×2

  B、1×1×2+1×3×4

  C、1×1×2+1×4×3

  讨论得出:底面周长×高=4个侧面的面积

  4、思考题:

  我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?

  板书设计:

  长方体和正方体的表面积的概念

  = 长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  = (长×宽+长×高+宽×高)×2

  课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。

《正方体的表面积》教学设计14

  教学目标

  1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法、

  2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念、

  教学重点

  表面积的意义、

  教学难点

  长方体表面积的计算方法、

  教学过程

  一、复习准备、

  1、说出长方形面积的计算公式、

  2、看图回答、

  (1)指出这个长方体的长、宽、高各是多少?

  (2)哪些面的面积相等?

  (3)填空、

  这个长方体上、下两个面的长是( )宽是( )、

  左、右两个面的长是( )宽是( )、

  前、后两个面的长是( )宽是( )、

  3、想一想、

  长方体和正方体都有几个面?(6个面)

  二、揭示课题、

  今天这节课我们就来学习和研究有关这6个面的一些知识、

  三、教学新课、

  (一)长、正方体表面积的意义、

  1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、

  “左”、“右”、“前”、“后”标在6个面上、

  2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)

  3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?

  教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、

  (板书:长方体和正方体的表面积、)

  (二)长方体表面积的`计算方法、

  例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?

  1、这题的问题,实际上就是要我们求什么?

  2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?

  3、学生分组讨论、

  解法(一)

  6×5×2+6×4×2+5×4×2

  = 60+48+40

  = 148(平方厘米)

  解法(二)

  (6×5+6×4+5×4)×2

  =(30+24+20)×2

  = 74×2

  = 148(平方厘米)

  4、比较上面两种解答方法有什么不同?它们之间有什么联系?

  解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)、

  四、巩固练习、

  1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)

  2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?

  五、课堂小结、

  通过解答例1和做一做,你发现长方体表面积的计算方法吗?

  结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2

  =(长×宽+长×高+宽×高)×2

  六、课后作业、

  1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?

  2、一个长方体的形状大小如下图、

  (1)它上、下两个面的面积分别是多少平方分米?

  (2)它前、后两个面的面积分别是多少平方分米?

  (3)它左、右两个面的面积分别是多少平方分米?

《正方体的表面积》教学设计15

  教学目标:

  1、知识性目标:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。

  2、探究性目标:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。

  3、情感性目标:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

  教具、学具准备:

  长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。

  教学设计理念:

  学生作为学习的主体,教师应积极创设各种有利于开发学生创造思维的教育情境,引导学生发现问题,分析矛盾,独立思考和相互启发。因此在教学设计中应加强对学生活动的设计,使活动的内在结构以及活动之间的结构有利于培养学生敢于求知、求异的探索态度,善于求新、设疑、迁移的学习能力,发散性思维和创造性动手操作能力。其次、要从学生的生活经验出发,用丰富多彩的亲历活动来充实教学过程,让学生在活动中运用多种知识和技能创造性地学习和实践。因此在教学设计中,要注意选取符合儿童的年龄特征和经验背景的活动,按由近及远、由浅入深、由具体到抽象、由简单到复杂。第三、教学内容要有利于学生的探究活动的开展,有利于学生提出问题、进行猜想、假设并制定科学探究活动计划,有利于学生的观察、实验、记录、统计等,有利于学生思索并得出结论。第四、探究活动要在情感态度上与儿童贴近,在一定程度上能够调动儿童参与活动的积极性。

  教学过程:

  (一)创设活动情景,复习导入。

  1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!

  2、小组合作,利用长、正方形纸板动手制作长方体纸盒。

  3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。

  生1:长方体有6个面、12条棱、8个顶点。

  生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。

  生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。

  生4:拿着长方体指出它的长、宽、高。

  师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)

  简析:此环节为学生创设了充分的想象空间,让学生在动手操作中运用所学知识,巩固所学知识,发展了学生的思维,并使学习数学成了一种乐趣,从而唤起了学生观察、探究、发现数学规律的欲望,为学生学习新知作了铺垫,使学生顺利进入下个环节的学习。

  (二)自主探究,合作交流。

  1、教学长方体、正方体表面积的概念

  师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用上、下、左、右、前、后标明六个面。

  师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?

  生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。

  师:有几组面积相等的长方形?

  生:总共有三组面积相等的长方形。

  师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)

  师:展开后的每个面是什么形状的?有几个相等的面?

  生:每个面是正方形的,有6个相等的面。

  师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。(板书课题:长方体和正方体的表面积、长方体表面积的计算)

  简析:为了使学生更好的理解表面积的概念,通过让学生亲自操作,认真观察,使其更清楚的看出长方体相对面的面积相等,也为下面学习计算长方体的表面积做好准备。

  2、教学长方体、正方体表面积的计算

  师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。

  生合作探究计算方法,汇报如下:

  生1:我们组列式是65+65+63+63+53+53,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。

  生2:我们组列式为652+632+532。我用652求上下两个面的面积;用632求出前后两个面的面积;用532求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。

  生3:我们组列式是(65+63+53)2。我用65求出上面;63求出前面;53求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。

  生4:我们组列式是(5+3+5+3)6+532。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;532求的是左右两个面的面积。最后再求出它们的和。

  生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:634+332,我用634求的是上下、前后四个面的面积;用332求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。

  师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。

  师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

  生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。

  生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。

  简析:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生运用自己的长方体纸盒,通过讨论、测量、计算等方法,解决实际问题,降低了理解的难度,也进一步激发了学习数学的兴趣,增强了合作和探求知识的'意识。在此环节中学生不仅自己主动经历表面积的计算过程,感受到了表面积的意义,而且也使自己探索到解决问题的方法,加深了学生对知识的理解,培养了学生的创新能力。

  (三)巩固练习,深化理解。

  1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。

  2、生独立计算。

  3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)

  简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。

  (四)联系实际、学以致用。

  1、师:请同学们拿出正方体药盒,帮助工人师傅计算一下要加工100个这样的药盒,至少要用多少纸板?

  2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)

  3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)

  简析:数学学习,从理解知识到具体应用,解决实际问题,这是一次飞跃。本节课所设计的练习题都是学生熟悉的生活实际物品,灵活应用长方体和正方体表面积的意义和计算方法解题,让学生运用所学知识解决实际问题在应用中发展智能。体会到生活中处处有数学,还了数学的本来面目。

  (五)课堂总结

  师:这节课你有什么收获?

  简析:归纳本节课的基础知识和基本技能,总结交流学习方法,对知识的掌握及今后的学习相得益彰。

  反思:

  学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历—和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。