平行四边形面积的计算教学设计
作为一名教职工,可能需要进行教学设计编写工作,编写教学设计有利于我们科学、合理地支配课堂时间。那么你有了解过教学设计吗?下面是小编收集整理的平行四边形面积的计算教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
平行四边形面积的计算教学设计1
教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3.引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。教学过程:
一、激发
1.提问:怎样计算长方形面积?
板书:长方形面积=长×宽
2.口算出下面各长方形的面积。
(1)长1.2厘米,宽3厘米。
(2)长0.5米,宽0.4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习“平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。
(1)请大家打开书自学
(2)指名到投影上数。边数边讲解:我先数......,它是......平方厘米;再数......,它是......平方厘米;两部分合起来是......平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形--长方形。这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的`高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书:平行四边形的面积=底×高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=a×h
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作”·“,也可以省略不写。所以平行四边形面积的计算公式可以写成”S=a·h或“S=ah”。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
订正时提问:计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)
162015
20
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
平行四边形面积的计算教学设计2
教材分析
本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。
学情分析
在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。
教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点 理解公式并正确计算平行四边形的面积。
教学难点
用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。
教学准备每人准备一个长方形、平行四边形和一把剪刀。
教学过程
(一)剪剪拼拼,渗透转化。
(每生发一个长为10厘米,宽为15厘米的长方形)
师:同学们,这种形状的图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?
师:今天我们要给长方形来变变样。
师:你有办法马上算出这个图案的面积吗?
师:为什么这么快就算出来了。
师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?
师小结:转化思想。
(二)创设情境,探究新知。
1、猜测平行四边形面积的计算方法。
师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的`哪些数据?这么多方法,到底哪种对呢?
2、组织探究活动。
同桌合作活动,活动前思考:
想一想,你准备把平行四边形转化成什么图形,为什么?
提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。
边操作边思考:
转化后的图形与平行四边形有什么关系?
你认为平行四边形的面积该如何计算?
4、交流探究结果
师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的。
5、推导面积公式
师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?
小结:回顾一下观察的全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。
长方形的面积=长×宽
平行四边形的面积=底×高
师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah
(三)练习巩固,课堂拓展
1、求下面平行四边形的面积。
2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)
3、判断:哪个平行四边形的面积是2×3=6
4、看谁算得快
5、睁大眼睛,别看花眼啦
6、书本练习十五第7题。
7、书本第83页第5题。
平行四边形面积的计算教学设计3
教学内容:苏教版第八册第42页“平行四边形面积的计算”
教学目标:
1、发现平行四边形面积的计算方法。
2、能类推出平行四边形面积的计算公式。
3、能准确进行平行四边形面积的计算。
4、培养学生的动手操作、观察、分析、类推能力。
5、渗透转化思想,培养学生的空间观念。
教学重点:掌握平行四边形面积的计算公式,准确计算平行四边形面积。
教学难点:平行四边形面积公式的推导过程。
教学具准备:自剪平行四边形,作业纸,课件。
教学过程:
一、复习铺垫:
1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)
2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢?
3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)
二、引导探索、揭示新知:
1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的底是多少?高是多少?(指名回答)
有谁知道它的面积是多少?你怎么知道的'?
那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢?
这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)
2、实验操作
(1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)
(2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!
(3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)
(4)为什么要沿高剪开呢?(因为长方形的四个角都是直角)
3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。
第一步画:从平行四边形一个钝角的顶点向对边作高。
第二步剪:沿高把平行边形剪成两部分。
第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。
4、公式推导
(1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?
根据回答板书:
长方形的面积长宽
平行四边形的面积底高
(2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书
同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。
请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。
师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。
5、教学字母公式
如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:
s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍
三、应用公式、尝试例题
1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?
问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做
(1)指名板演(其余学生做在课堂练习本上)
(2)集体评讲
2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?
四、巩固练习
同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名)
五、全课总结
通过这堂课的学习你有什么收获?
师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。
六、学到这儿,你有没有这方面知识的思考题来让大家动动脑?
机动思考题:
1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?
2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?
平行四边形面积的计算教学设计4
教学目标:
1、经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验、
2、知道平行四边形的面积公式、
3、会求平行四边形的面积、
4、利用教师的情感特征调动学生学习的积极性和主动性、
教学重点:
1、平行四边形面积公式的推导过程、
2、应用平行四边形的面积公式进行计算、
教学难点:
平行四边形面积公式的推导过程、
教学关键:
转化前后平行四边形与长方形面积及各部分间的对应关系、
教学过程:
一、启动导入:
1、电脑出示长方形图形:
指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积、
指生口答
问:你是怎么做的?
②出示:
这还是长方形吗?你能求出它的面积吗?(生:18平方厘米、)
生小组内先交流一下,指生反馈
得出两种方法:(1)数格子法 (2)将它转化成一个长方形,再求出它的面积。师重点评讲第二种方法。
③出示: 这个图形,你会求它的面积吗?(生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形、再根据长方形的面积公式长×宽就可以求出这个图形的面积、(电脑课件演示转化过程)、
2、刚才, 这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)
把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。
刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。)
3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。(板书课题)
二、主动探索:
1、引导探索:不规则的图形可以转化成长方形来求出它的面积。平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。
电脑出示:⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积、
转化后思考:
①转化成怎样的图形?你是如何转化的?(如何画线)
②通过转化你发现了什么?
③说明了什么?学生分四人小组讨论,教师点拨、
学生汇报。
学生可能出现的情况:
问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)
生:我们把平行四边形沿高剪开,变成了长方形。转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。说明求出了长方形的面积,也就求出了平行四边形的面积。
小结:尽快我们采用了不同的方法,都是把平行四边形转化为长方形。并且知道转化前后面积的大小没有变化。下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的.面积计算公式。
2、推导公式:
(1)请同学们对照转化前后两个图形各个部分之间的对应关系,以四人小组为单位,小组合作推导出平行四边形的面积计算公式、
四人小组讨论推导平行四边形的面积,教师点拨。
学生汇报:长方形是由平行四边形的面积转化而来的。转化前后面积的大小没有变化,所以长方形的面积等于平行四边形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积是长×宽,所以,平行四边形的面积=底×高。
(2)电脑课件演示平行四边形转化为长方形的过程。结合图重点讲解平行四边形面积公式的推导。
平行四边形面积的计算教学设计5
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的.特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
平行四边形面积的计算教学设计6
教学基本
内容苏教版小学数学五年级(上册)第12—14页例1、例2、例3,试一试,练一练及练习二。
教学目的和要求
1、使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。
2、引导学生操作、观察、比较,发展学生的空间观念,使学生初步知道转化的数学思想方法。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点及难点
正确地运用公式进行计算
教学方法及手段
引导学生操作、观察、比较,使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。
学法指导
观察,归纳,集体备课个性化修改
预习
1、谈话:同学们,你们认识哪些平面图形?
2、在这些图形中,你会求哪些图形的面积?
教学环节设计
1、教学例1:
(1)出示例1中的第1组图
提问:下面的两个图形面积是否相等?
在小组里说一说你准备怎样比较这两个图形的面积。
(2)出示例1中的第2组图要求:不用刚才的方法还能比较这两个图形的大小吗?
(3)揭示课题:今天我们运用已学过的知识来研究新图形的面积计算公式。板书“平行四边形面积的计算”。
2、教学例2:
(1)出示一个平行四边形
你能想办法把这个平行四边形转化成学过的.图形吗?
第一种:
①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移,到斜边重合。
第二种:
①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移,到斜边重合。
(2)用课件演示转化过程并小结。
沿着平行四边形的任意一条高剪开,通过平移,可以把平行四边形转化成一个长方形。
(3)组织小组讨论:
a转化后长方形的面积与原来平行四边形面积相等吗?
b长方形的长与平行四边形的底有什么关系?
c长方形的宽与平行四边形的高有什么关系?(4)板书:
长方形的面积=长×宽
平行四边形的面积=底×高
3、教学例3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第127页上任选一个平行四边形剪下来,试一试。
转化成的长方形平行四边形
长宽面积底高面积
(2)用字母表示面积公式:S=ah(板书)
4、完成试一试,教师评议:明确求平行四边形的面积要有两个条件,底和高。
作业
1、完成练一练:强调底和高的对应关系。
2、完成练习二的第1题。
3、完成练习二的第5题。引导学生操作,得到结论。
平行四边形面积的计算教学设计7
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的.推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
平行四边形面积的计算教学设计8
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:
1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。
新袁镇人民政府
20xx年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、 出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)
2、 出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、 让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。
4、 课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(3)、引导学生比较
5、 这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?
6、 这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、 这个长方形的宽与原来的平行四边形的高有什么样的.关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、 这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、 那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a × h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、 回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、 完成后让学生看书第65页例1
12、 测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。
三、巩固、练习
略
四、作业
课后练习题
平行四边形面积的计算教学设计9
教学目标:
1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。
2、通过操作、分析讨论等活动,培养学生
动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。
3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。
4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:
使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。
教学难点:
能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。
教学过程:
一、情景引入
1、联系实际选择建房用地。
(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?
(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。
让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?
(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……
二、探究新知
1、面积计算公式的推导:
引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?
(1)讲解相关的要求。明确小组研究要求。
(2)操作验证。巡视,个别指导。
(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。
问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)
(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。
引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)
教师逐步点击交互,得出:
长方形的面积=长×宽
平行四边形的面积=底×高
(5)用字母表示面积计算公式。
(6)小结。(明确转化的方法。)
2、面积计算公式的应用:
(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。
讨论后,给出底和高,进行计算。
(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。
(3)试一试:计算平行四边形的面积。
3、教学小结。进行推导:
(1)明确研究的要求。
(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)
(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。
(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。
(5)了解认识、明确:S=a×h,S=a·h或者S=ah。
(6)进行小结。
4、初步运用公式。
(1)教学试一试,(2)练一练。
三、巩固应用
1、练习二“第1题”。
先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。
2、练习二“第2题”。
可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。
3、练习二“第3题”。
这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。
4、练习二“第5题”。
让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。
四、课堂总结
今天学习了什么?你有什么收获?(让学生自由发挥。)
教学反思:
上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的'内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自己的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
平行四边形面积的计算教学设计10
教学重点:
平行四边形面积的推导过程.
本课采用的教法:
自学法、转化方法、小组合作法、实验法。
学法:
1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景,为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的'说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想
三小组合作,培养学生的合作精神.
小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.
四例题独立完成,体现学生自己解决问题的能力.
例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
平行四边形面积的计算教学设计11
教学目标:
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点和难点:
教学重点掌握平行四边形面积计算的公式,能正确计算平行四边形的面积。
教学难点平行四边形面积计算公式的推导过程。
教学重难点:面积公式的推导。
教具、学具准备:
1. 教学课件。
2.剪两个底40厘米,高30厘米的平行四边形,供演示用。
3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。
教学过程:
一、复习
1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
教师:今天我们就来学习平行四边形面积的计算方法。
板书课题:平行四边形的面积
二、新课
1.用数方格的方法求平行四边形的面积。
(l)指导学生数方格。
(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较平行四边形和长方形。
提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?
启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?
2.用实验的`方法推导平行四边形面积公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手.)
(2)教师示范把平行四边形转化成长方形的过程。
刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右平行移动。
③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合.(教师巡视指导。)
(3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。
(4)引导学生总结平行四边形面积的计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)
(5)教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
教师说明:在含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成ah,代表乘号的“.”也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah。
(6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。
3.应用总结出的面积公式计算平行四边形的面积。
(1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。
(2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。
(3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。
三、巩固练习
做练习十六的第1题。
四、小结
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、作业;练习十六
第2题和第3题。
【平行四边形面积的计算教学设计】相关文章:
梯形面积的计算教学设计12-13
组合图形的面积计算教学设计06-28
《组合图形的面积计算》的教学设计06-26
《平行四边形面积的计算》说课设计07-02
《平行四边形面积的计算》教学实录07-02
教学实录:平行四边形面积的计算06-28
平行四边形的面积教学设计03-03
平行四边形的面积教学设计07-04
平行四边形面积教学设计04-10